Сколько киловатт выдержит автомат на 16 Ампер, на 25, на 32, на 50 Ампер?
Чтобы ответить на вопрос о мощности определённого автомата, знание его силы тока не достаточно, необходимы ещё некоторые параметры.
На личном опыте столкнулся с ситуацией когда один и тот же автомат (в моём случае 25 ампер) выдерживал разную мощность, о чём постараюсь растолковать ниже.
Я уже как-то описывал систему вычисления такого значения, как Ампер в Вашем вопросе.
Напомню, что для однофазного тока, амперы рассчитываются от напряжения в сети (Вольты) и мощности (Ватты). Для этого расчета применяют простейшую формулу:
В которой обозначения соответствуют: А – амперы, В – вольты, Вт – ватты (можно перевести в кВт)
Так как при подключении автомата мы имеем следующие значения:
А (амперы) – написаны на самом автомате (16, 25, 32, 50 и т.д)
В (вольты) – мы всегда знаем какое напряжение будет использоваться, в данном случае в России распространено 220 Вольт)
А вот мощность, выраженную в Вт (ваты) мы не знаем и хотим её узнать.
Для этого переставляем в формуле значения и останется только вычислить цифру, подставив туда наши значения.
Потом полученный результат делим на 1000 и получаем значение в кВт.
!Но тут есть один нюанс, мы все привыкли к тому, что в сети 220 Вольт, а на самом деле там скорее всего окажется 230 Вольт, это опять же с тем условием, что нет перепада в напряжении.
Так что давайте рассмотрим четыре варианта на примере с автоматом 16 ампер.
1 вариант (сеть 220 Вольт) 16*220=3520/1000=3,5
2 вариант (сеть 230 Вольт) 16*230=3520/1000=3,6
3 вариант (сеть 210 Вольт, пониженное) 16*210=3360/1000=3,3
4 вариант (сеть 240 Вольт, повышенное) 16*240=3840/1000=3,8
Как видим, результат от 3,36 до 3,84 и чем ниже напряжение, тем меньшую мощность может выдержать, по этой причине лучше всего ориентироваться исходя из минимального напряжения в сети, чем максимального.
По общепринятым условиям мощность вычисляют исходя из напряжения в 220 Вольт, а именно получаться следующие результаты:
1 Ампера – выдержат в среднем 0,22 кВт
2 Ампера – выдержат в среднем 0,44 кВт
3 Ампера – выдержат в среднем 0,66 кВт
6 Ампера – выдержат в среднем 1,32 кВт
10 Ампера – выдержат в среднем 2,2 кВт
16 Ампера – выдержат в среднем 3,52 кВт
20 Ампера – выдержат в среднем 4,4 кВт
25 Ампера – выдержат в среднем 5,5 кВт
32 Ампера – выдержат в среднем 7,04 кВт
40 Ампера – выдержат в среднем 8,8 кВт
50 Ампера – выдержат в среднем 11,0 кВт
63 Ампера – выдержат в среднем 13,86 кВт
Как видите, всё достаточно просто.
Но выше значения только для переменного тока на 220 Вольт, а для 380 вольт рассчитывать надо по другой формуле, исходя из
Для расчёта мощности, переставляем значения:
Если исходить также из стандартов в напряжении сети, то получим результаты (для 380 Вольт “Звезда”):
1 Ампера – выдержат в среднем 0,66 кВт
2 Ампера – выдержат в среднем 1,32 кВт
3 Ампера – выдержат в среднем 1,97 кВт
6 Ампера – выдержат в среднем 3,95 кВт
10 Ампера – выдержат в среднем 6,58 кВт
16 Ампера – выдержат в среднем 10,53 кВт
20 Ампера – выдержат в среднем 13,16 кВт
25 Ампера – выдержат в среднем 16,45 кВт
32 Ампера – выдержат в среднем 21,06 кВт
40 Ампера – выдержат в среднем 26,32 кВт
50 Ампера – выдержат в среднем 32,91 кВт
63 Ампера – выдержат в среднем 41,46 кВт
Перевод квт в амперы
Перевести киловатты (кВт) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор кВт в А (1 фаза, постоянный ток)
Формула для перевода кВт в А
Сила тока I в амперах ( А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).
Калькулятор кВт в А (1 фаза, переменный ток)
Формула для перевода кВт в А
Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).
Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)
Как перевести ватты в амперы и наоборот, формулы расчётов
Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.
Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.
Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.
Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.
Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.
В чем состоит отличие ампер и киловатт
Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.
В данном случае:
- амперы (сокращение А) показывают силу тока;
- ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.
На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.
Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.
В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.
Для таких цепей действует следующее простое соотношение:
W = U*I, (1)
где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.
При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:
W = U*I*cosφ, (2)
где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.
По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.
Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.
Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.
Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.
При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.
Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.
Для этих единиц справедливо:
1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).
Почему возникает необходимость перехода от ампер к киловаттам и обратно
Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.
В результате
- сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
- аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
- основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.
Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.
Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.
С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.
Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.
Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.
Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.
В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.
Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.
Определение мощности по силе тока для однофазной сети
Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.
При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.
На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.
Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.
Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.
Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.
Это полезное свойство обеспечено:
- установкой автоматов;
- применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).
Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.
Пересчет мощности в ток для однофазной сети
Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.
На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.
Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.
Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.
При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).
Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:
- W = 2,8*1000 = 2800 Вт;
- I = W/220 = 12,7 А.
Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).
Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т. е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.
Быстрая оценка токов и мощностей
Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.
В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.
Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.
Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.
Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.
Таким образом, получаем простые правила:
- один кВт соответствует 4,5 А тока;
- один ампер соответствует мощности 0,22 кВт.
Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.
Связь мощности и тока в трехфазной сети
Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.
В качестве базового соотношения традиционно берется выражение:
W =1,73* U*I, (4)
причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.
Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.
Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.
Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:
- один кВт соответствует 1,5 А потребляемого тока;
- один ампер соответствует мощности 0,66 кВт.
Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.
Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.
Особенности выполнения расчетов автоматов
Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.
Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.
Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:
- формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
- в технических данных этих устройств находят мощность;
- с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W [Вт]/220;
- по величине общего тока определяют номинал автомата.
Проиллюстрируем приведенную методику примером.
Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:
- настольную лампу мощностью 60 Вт;
- торшер с двумя лампами по 60 Вт;
- напольный кондиционер мощностью 1,7 кВт;
- персональный компьютер с мощностью потребления 600 Вт.
Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.
Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.
Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.
Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.
Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:
I = 2280/230 = 10,8 А.
Если воспользоваться методом экспресс-оценки, то мощность вычисляем уже как 0,06 + 2*0,06 + 1,7*1 + 0,6 = 2,48 кВт и в соответствии с правилом 4,5 А/кВт получаем довольно близкое значение 11,2 А.
Таблица.
Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.
Также можно воспользоваться калькулятором перевода ватт в амперы.
Понравилась статья? Оставляйте свои отзывы в комментариях.
Перевести киловольт-амперы (кВА) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести киловольт-амперы (кВА) в амперы (А), введите полную мощность S в киловольт-амперах (кВА), напряжение U в вольтах (В), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор кВА в А (1 фаза)
Формула для перевода кВА в А
Сила тока I в амперах (А) равняется полной мощности S в киловольт-амперах (кВА), умноженной на 1000 и деленной на напряжение U в вольтах (В).
Калькулятор кВА в А (3 фазы, линейное напряжение)
Формула для перевода кВА в А
Сила тока I в амперах (А) равна полной мощности S в киловольт-амперах (кВА), умноженной на 1000 и деленной на произведение квадратного корня из трех и напряжения U в вольтах (В).
Калькулятор кВА в А (3 фазы, фазное напряжение)
Формула для перевода кВА в А
Сила тока I в амперах (А) равняется полной мощности S в киловольт-амперах (кВА), умноженной на 1000 и деленной на утроенное напряжение U в вольтах (В).
Перевести ватты (Вт) в амперы (А): онлайн-калькулятор, формула
Инструкция по использованию: Чтобы перевести ватты (Вт) в амперы (А), введите мощность P в ваттах (Вт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).
Калькулятор Вт в А (постоянный ток)
Формула для перевода Вт в А
Сила тока I в амперах (А) сети с постоянным током равняется мощности P в ваттах (Вт), деленной на напряжение U в вольтах (В).
Калькулятор Вт в А (1 фаза, переменный ток)
Формула для перевода Вт в А
Сила тока I в амперах (А) однофазной сети с переменным током равняется мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).
Калькулятор Вт в А (3 фазы, переменный ток, линейное напряжение)
Формула для перевода Вт в А
Сила тока I в амперах (А) трехфазной сети с линейным напряжением равна мощности P в ваттах (Вт), деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.
Калькулятор Вт в А (3 фазы, переменный ток, фазное напряжение)
Формула для перевода Вт в А
Сила тока I в амперах (А) трехфазной сети с фазным напряжением равна мощности P в ваттах (Вт), деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).
Как перевести амперы в киловатты и обратно: правила и примеры
Амперы и киловатты – характеристики электроэнергии, потребляемой устройствами, подключенными к сети. Первую называют еще нагрузкой, а вторую – мощностью. Необходимость перевода возникает на стадии подбора защитных устройств, в маркировке которых чаще всего указывается лишь сила тока.
Все о том, как перевести Амперы в Киловатты, вы узнаете из предложенной нами статьи. Мы рассмотрим теорию, разберемся с основными принципами перевода, а затем поясним смысл этих действий на практических примерах. Следуя нашим советам, вы сможете самостоятельно выполнять такие вычисления.
Содержание статьи:
Причины для выполнения перевода
Мощность и сила тока — ключевые характеристики, необходимые для грамотного подбора защитных устройств для оборудования, питающегося электроэнергией. Защита нужна для предотвращения оплавления изоляции проводки и поломки агрегатов.
Электропроводка, питающая освещение, электроплиту, кофе-машину должна защищаться индивидуально подобранными устройствами. Ведь каждый потребитель создает «свою» нагрузку – другими словами, потребляет определенный ток.
Кстати, кабели, провода, питающие перечисленные бытовые устройства, обладают определенной токонесущей способностью. Последняя диктуется сечением жил.
Каждое защитное устройство обязано срабатывать в момент скачка напряжения, опасного для защищаемого типа техники или группы технических устройств. Значит, подбирать и автоматы следует так, чтобы во время угрозы для маломощного прибора не отключалась полностью сеть, а только ветка, для которой этот скачек является критичным.
На корпусах предложенных торговой сетью проставлена цифра, обозначающая величину предельно допустимого тока. Естественно, указана она в Амперах.
А вот на электроприборах, которые обязаны защищать эти автоматы, обозначена потребляемая ими мощность. Тут и возникает необходимость в переводе. Несмотря на то, что разбираемые нами единицы принадлежат разным токовым характеристикам, связь между ними прямая и довольно тесная.
Правильно подобрать защиту помогают амперы и киловатты, характеризующие электропотребление бытовых устройств
Напряжением именуют разность потенциалов, проще говоря, работу, вложенную в перемещение заряда от одной точки к другой. Выражается оно в Вольтах. Потенциал – это и есть энергия в каждой из точек, в которой находится/находился заряд.
Под силой тока подразумевается число Ампер, проходящих по проводнику в конкретную единицу времени. Суть мощности заключается в отражении скорости, с которой происходило перемещение заряда.
Мощность обозначают в Ваттах и Киловаттах. Ясно, что второй вариант используется, когда слишком внушительную четырех- или пятизначную цифру нужно сократить для простоты восприятия. Для этого ее значение просто делят на тысячу, а остаток округляют как обычно в большую сторону.
Для питания мощного оборудования нужна более высокая скорость потока энергии. Предельно допустимое напряжение для него больше, чем для маломощной техники. У подбираемых для него автоматов предел срабатывания должен быть выше. Следовательно, точный подбор по нагрузке с грамотно выполненным переводом единиц просто необходим.
Правила проведения перевода
Часто изучая инструкцию, прилагаемую к некоторым приборам, можно увидеть обозначение мощности в вольт-амперах. Специалисты знают разницу между ваттами (Вт) и вольт-амперами (ВА), но практически эти величины обозначают одно и то же, поэтому преобразовывать здесь ничего не нужно. А вот кВт/час и киловатты — понятия разные и путать их нельзя ни в коем случае.
Чтобы продемонстрировать, как выразить электрическую мощность через ток, нужно воспользоваться следующими инструментами:
- тестером;
- токоизмерительными клещами;
- электротехническим справочником;
- калькулятором.
При перерасчете ампер в кВт используют следующий алгоритм:
- Берут тестер напряжения и измеряют напряжение в электроцепи.
- Используя токоизмерительные ключи, замеряют силу тока.
- Производят перерасчет, используя формулу для постоянного напряжения в сети или переменного.
В результате мощность получают в ваттах. Чтобы преобразить их в киловатты, делят получившееся на 1000.
У нас на сайте также есть материал о правилах перевода Амперов в Ватты. Чтобы с ним ознакомиться, переходите, пожалуйста, по .
Однофазная электрическая цепь
На однофазную цепь (220 В) рассчитано большинство бытовых приборов. Нагрузка здесь измеряется в киловаттах, а маркировка АВ содержит амперы.
Чтобы не заниматься вычислениями, при выборе автомата можно воспользоваться ампер-ватт таблицей. Здесь уже есть готовые параметры, полученные путем выполнения перевода при соблюдении всех правил
Ключевым при переводе в этом случае является закон Ома, который гласит, что P, т.е. мощность, равна I (силе тока) умноженной на U (напряжение). Подробнее о расчете мощности, силы тока и напряжения, а также о взаимосвязи этих величин мы говорили в .
Отсюда вытекает:
кВт = (1А х 1 В) / 1 0ᶾ
А как же это выглядит на практике? Чтобы разобраться, рассмотрим конкретный пример.
Допустим, автоматический предохранитель на счетчике старого типа рассчитан на 16 А. С целью определения мощности приборов, которые можно безболезненно включить в сеть одновременно, нужно осуществить перевод ампер в киловатты с применением вышеприведенной формулы.
Получим:
220 х 16 х 1 = 3520 Вт = 3,5КВт
Как для постоянного, так и переменного тока применяется одна формула перевода, но справедлива она только для активных потребителей, таких как нагреватели лампы накаливания. При емкостной нагрузке обязательно возникает сдвиг фаз между током и напряжением.
Это и есть коэффициент мощности или cos φ. Тогда как при наличии только активной нагрузки этот параметр принимают за единицу, то при реактивной нагрузке его нужно принимать во внимание.
Если нагрузка смешанная, значение параметра колеблется в диапазоне 0,85. Чем меньше приходится на реактивную составляющую мощности, тем незначительней потери и тем выше коэффициент мощности. По этой причине последний параметр стремятся повысить. Обычно производители указывают значение коэффициента мощности на этикетке.
Трехфазная электрическая цепь
В случае переменного тока в трехфазной сети берут значение электрического тока одной фазы, затем умножают на напряжение этой же фазы. То, что получили, умножают на косинус фи.
Подключение потребителей может быть выполнено в одном из двух вариантов — звездой и треугольником. В первом случае это 4 провода, из которых 3 являются фазными, а один — нулевым. Во втором применяют три провода
После подсчета напряжения во всех фазах, полученные данные складывают. Сумма, полученная в результате этих действий, является мощностью электроустановки, подсоединенной к трехфазной сети.
Основные формулы имеют следующий вид:
Ватт = √3 Ампер х Вольт или P = √3 х U х I
Ампер = √3 х Вольт либо I= P/√3 х U
Следует иметь понятие о разнице между напряжением фазным и линейным, а также между токами линейными и фазными. Перевод ампер в киловатты в любом случае выполняют по одной и той же формуле. Исключение — соединение треугольником при расчете нагрузок, подключенных индивидуально.
На корпусах или упаковке последних моделей электроприборов указана и сила тока, и мощность. Обладая этими данными, можно считать вопрос, как быстро перевести амперы в киловатты, решенным.
Специалисты применяют для цепей с переменным током конфиденциальное правило: силу тока делят на два, если нужно примерно вычислить мощность в процессе подбора пускорегулирующей аппаратуры. Также поступают и при расчете диаметра проводников для таких цепей.
Примеры перевода ампер в киловатты
Преобразование ампер в киловатты — довольно простая математическая операция.
Бывает так, что на этикетке электроприбора присутствует значение мощности в кВт. В этом случае придется киловатты переводить в амперы. При этом I = P : U = 1000 : 220 = 4,54 А. Справедливо и обратное — P = I х U = 1 х 220 = 220 Вт = 0,22 кВт
Существует также много онлайн – программ, где нужно всего-навсего ввести известные параметры и нажать соответствующую кнопку.
Пример №1 — перевод А в кВт в однофазной сети 220В
Перед нами стоит задача: определить предельную мощность, допустимую для автоматического выключателя однополюсного с номинальным током 25 А.
Применим формулу:
P = U х I
Подставив значения, которые известны, получим: P = 220 В х 25 А = 5 500 Вт = 5,5 кВт.
Это обозначает, что к этому автомату могут быть подключены потребители, общая мощность которых не выходит за пределы 5,5 кВт.
По такой же схеме можно решить вопрос подбора сечения провода для электрочайника, потребляющего 2 кВт.
В этом случае I = P : U= 2000 : 220 = 9 А.
Это совсем маленькое значение. Нужно серьезно подойти к выбору сечения провода и материалу. Если отдать предпочтение алюминиевому, он выдержит только слабые нагрузки, медный с такого же диаметра будет мощнее в два раза.
Подробнее о выборе нужного сечения провода для устройства домашней проводки, а также правила вычисления сечения кабеля по мощности и по диаметру мы разбирали в следующих статьях:
Пример №2 — обратный перевод в однофазной сети
Усложним задачу — продемонстрируем процесс перевода киловатт в амперы. Имеем какое-то число потребителей.
Среди них:
- четыре лампы накаливания каждая по 100 Вт;
- один обогреватель мощностью 3 кВт;
- один ПК мощностью 0,5 кВт.
Определению суммарной мощности предшествует приведение величин всех потребителей к одному показателю, точнее — киловатты следует перевести в ватты.
Розетки, АВ в своей маркировке содержат амперы. Для непосвященного человека сложно понять, отвечает ли нагрузка по факту расчетной, а без этого невозможно правильно выбрать предохранитель
Мощность обогревателя равна 3 кВт х 1000 = 3000 Вт. Мощность компьютера — 0,5 кВт х 1000 = 500 Вт. Лампы — 100 Вт х 4 шт. = 400 Вт.
Тогда обобщенная мощность: 400 Вт + 3000 Вт + 500 Вт = 3 900 Вт или 3,9 кВт.
Такой мощности соответствует сила тока I = P : U = 3900Вт : 220В = 17,7 А.
Из этого вытекает, что приобрести следует автомат, рассчитанный на номинальный ток не меньше, чем 17,7 А.
Наиболее соответствующим нагрузке мощностью 2,9 кВт является автомат стандартный однофазный 20 А.
Пример №3 — перевод ампер в кВт в трехфазной сети
Алгоритм перевода ампер в киловатты и в обратном направлении в трехфазной сети отличается от сети однофазной только формулой. Допустим, нужно высчитать, какую же наибольшую мощность выдержит АВ, номинальный ток которого 40 А.
В формулу подставляют известные данные и получают:
P = √3 х 380 В х 40 А = 26 296 Вт = 26,3кВт
Трехфазный АБ на 40 А гарантировано выдержит нагрузку 26,3 кВт.
Пример №4 — обратный перевод в трехфазной сети
Если мощность потребителя, подключаемого к трехфазной сети, известна, ток автомата вычислить легко. Допустим, имеется трехфазный потребитель мощностью 13,2 кВт.
В ваттах это будет: 13,2 кт х 1000 = 13 200 Вт
Далее, сила тока: I = 13200Вт : (√3 х 380) = 20,0 А
Получается, что этому электропотребителю нужен автомат номиналом 20 А.
Для однофазных аппаратов существует следующее правило: один киловатт соответствует 4,54 А. Один ампер — это 0,22 кВт или 220 В. Это утверждение — прямой результат, вытекающий из формул для напряжения 220 В.
Выводы и полезное видео по теме
О связи ватт, ампер и вольт:
Зависимость между амперами и киловольтами описывает закон Ома. Здесь наблюдается обратная пропорциональность силы электротока по отношению к сопротивлению. Что касается напряжения, то прослеживается прямая зависимость силы тока от этого параметра.
У вас остались вопросы по принципу перевода Амперов в Киловатты или хотите уточнить нюансы практического расчета? Задавайте свои вопросы нашим экспертам в блоке комментариев, расположенном ниже под статьей.
Если у вас есть полезная информация, дополняющая изложенный выше материал, или уточнения, поправки, пишите свои замечания и дополнения ниже.
Амперы в киловатты: как рассчитать, таблица
Сегодня для грамотного подсчета суммарного количества используемого электрического оборудования в электроцепи, правильного подбора электросчетчика или измерения изоляции необходимо овладеть техникой перевода амперов в ватты и знать их соотношение. О том, как перевести амперы в киловатты, как это правильно делать в однофазной и трехфазной цепи и сколько ампер в киловатте в цепи 220 вольт — далее.
Соотношение ампер и киловатт
Ампер считается измерительной единицей электротока в международной системе или же силой электротока, проникающей через проводниковый элемент в количестве один кулон за одну секунду.
Определение ампера и киловаттаКиловатт является подъединицей ватта и измерительной мощностной единицей, а также тепловым потоком, потоком звуковой энергии, активной и полной мощностью переменного электротока. Все это скалярные измерительные единицы в международной системе, которые можно преобразовывать.
Обратите внимание! Что касается соотношения данных показателей, то в 1А находится 0,22 кВт для однофазной цепи и 0,38 для трехфазной.
Соотношение измерительных величинЗачем переводить амперы в киловатты
Многие люди привыкли при работе с электрическими приборами использовать киловатты, поскольку именно они отражаются на считывающих приборах. Однако многие предохранители, вилки, розетки автомата имеют амперную маркировку, и не каждый обычный пользователь сможет догадаться, сколько в ампераже устройства киловаттовой энергии. Именно из-за этих возникающих проблем необходимо научиться делать перевод величин. Также нередко это нужно, чтобы четко пересчитать, сколько и какой прибор потребляет электроэнергии. Иногда это избавляет от лишних трат на электроэнергию.
Подсчет используемого электрооборудования дома как цель переводаПереводы с амперов в киловатты и наоборот
Осуществлять переводы величин можно тремя способами: универсальной таблицей, онлайн калькулятором или формулой. Что касается использования калькулятора, нужно в соответствующие поля вставить исходные показатели и нажать кнопку. Использовать эту систему удобно в том случае, когда приходится сталкиваться с большими цифровыми значениями.
Обратите внимание! Согласно универсальной таблице и формуле можно узнать, что в одном А находится 0,22 кВт или 0,38 кВт. Сделать перевод величин, используя имеющиеся цифры, можно при помощи калькулятора или умножением на приведенное значение. К примеру, чтобы посчитать, сколько будет 6А в кВт, нужно умножить 0,6 на 0,22. В итоге выйдет 1,32 кВт.
В однофазной электрической цепи
Чтобы вычислить необходимые величины в однофазной сети, где номинальный ток автоматического выключателя, к примеру, равен 10 А и в нормальном состоянии через него не течет энергия выше указанного значения, необходимо вычислить максимальную электромощность. Нужно подставить в формулу нахождения мощности значения напряжения и силы электротока и перемножить их между собой. Получится, что мощность будет равна 220*10=2200 ватт. Для перевода в меньшие значения необходимо цифру поделить на 1000. Выйдет 5,5 кВт. Это вся сумма мощностей, питающихся от автомата.
Перевод в однофазной электроцепиВ трехфазной электрической цепи
Перевод показателей в трехфазной сети, рассчитанной на 380 вольт, можно сделать подобным образом. Разница заключается в формуле. Чтобы определить искомые данные, необходимо подставить корень из трех в произведение напряжения и силы электротока. К примеру, автомат рассчитан на 40 А. Подставив значения, можно получить 26327 Вт. После деления значения на 1000 выйдет 26,3 кВт. То есть выйдет, что автомат сможет выдержать нагрузку.
При известном мощностном показателе трехфазной цепи рассчитывать рабочий ток можно, преобразовав данную формулу. То есть электромощность нужно поделить на корень из 3, умноженный на напряжение. В итоге, если электромощность равна 10 кВт, выйдет значение автомата в 16А.
Перевод в трехфазной электроцепиРасчет
Для подсчета величин используются специальные формулы. После их подсчета останется только вставить их в приведенные выше формулы. Чтобы отыскать электроток, стоит напряжение поделить на проводниковое сопротивление, а чтобы отыскать мощность, необходимо умножить напряжение на токовую силу или же двойное значение силы тока умножить на сопротивление. Также есть возможность поделить двойное значение напряжения на сопротивление.
Обратите внимание! Нередко все необходимые данные прописаны на коробке или технических характеристиках на сайте производителя. Часто информация указана в кВт и ее посредством конвертора легко можно перевести в ампераж. Еще одним простым вариантом, как определить потребление энергии и ампераж, будет изучение электросчетчика или автоматического выключателя потребителя. Но в таком случае необходимо подключать только один прибор к сети.
Формула расчетаТаблица перевода
На данный момент сделать перевод величин в прямом и обратном порядке можно без особых проблем благодаря специальной таблице с названием «100 ампер сколько киловатт». С помощью нее можно без проблем вычислить необходимые значения. Особо ее удобно использовать, когда нужно подсчитать большие числа. Интересно, что сегодня существуют таблицы, рассчитанные на подсчет ампеража и энергии автоматического выключателя однофазной и трехфазной цепи. Приводятся стандартные данные тех аппаратов, которые сегодня можно приобрести на рынке.
Таблица переводов киловатт и амперЧтобы узнать необходимые данные, нужно использовать приведенные выше формулы или применять таблицу переводов. Данные измерительные величины помогут посчитать используемую энергию конкретным аппаратом и произвести другие расчеты в области электрики.
Киловатт (кВт) в ампер калькулятор преобразования электрической энергии
Как преобразовать киловатты в амперы
Для однофазной цепи переменного тока формула преобразования киловатт (кВт) в амперы выглядит так:
амперы = (кВт × 1000) ÷ вольт
Можно найти силу тока в киловаттах, если вы знаете напряжение цепи, используя закон Ватта. Закон Ватта гласит, что ток = мощность ÷ напряжение. По закону Ватта мощность измеряется в ваттах, а напряжение – в вольтах.Формула найдет ток в амперах.
Сначала начните с преобразования киловатт в ватты, что можно сделать, умножив мощность в кВт на 1000, чтобы получить количество ватт.
Наконец, примените формулу закона Ватта и разделите количество ватт на напряжение, чтобы найти амперы.
Например, , найдите ток в цепи мощностью 1 кВт при 120 вольт.
амперы = (кВт × 1000) ÷ вольт
ампер = (1 × 1000) ÷ 120
ампер = 1000 ÷ 120
ампер = 8.33А
Преобразование киловатт в амперы с использованием коэффициента мощности
Оборудование часто не на 100% эффективно с точки зрения энергопотребления, и это необходимо учитывать, чтобы определить количество доступных ампер. Например, большинство генераторов имеют КПД 80%. КПД устройства можно преобразовать в коэффициент мощности, переведя процент в десятичную дробь, это коэффициент мощности.
Чтобы узнать коэффициент мощности вашей цепи, попробуйте наш калькулятор коэффициента мощности.
Формула для определения силы тока с использованием коэффициента мощности:
амперы = (кВт × 1000) ÷ (PF × вольт)
Например, , найдите ток генератора мощностью 5 кВт с КПД 80% при 120 вольт.
ампер = (кВт × 1000) ÷ (PF × вольт)
ампер = (5 × 1000) ÷ (0,8 × 120)
ампер = 5000 ÷ 96
ампер = 52,1 A
Как найти ток в трехфазной цепи переменного тока
Формула для определения силы тока для трехфазной цепи переменного тока немного отличается от формулы для однофазной цепи:
амперы = (кВт × 1000) ÷ (√3 × PF × вольт)
Например, , найдите ток трехфазного генератора мощностью 25 кВт с КПД 80% при 240 вольт.
Ампер = (кВт × 1000) ÷ (√3 × PF × В)
А = (25 × 1000) ÷ (1,73 × 0,8 × 240
А = 75,18 А
Для преобразования ватт в амперы используйте наш калькулятор преобразования ватт в амперы.
Номинальный ток генератора (трехфазный переменный ток)
Мощность | Ток при 120 В | Ток при 208 В | Ток при 240 В | Ток при 277В | Ток при 480 В |
---|---|---|---|---|---|
1 кВт | 6.014 A | 3,47 А | 3,007 А | 2,605 А | 1,504 А |
2 кВт | 12.028 А | 6,939 А | 6,014 А | 5,211 А | 3,007 А |
3 кВт | 18.042 А | 10,409 А | 9.021 А | 7,816 А | 4,511 А |
4 кВт | 24,056 А | 13,879 А | 12.028 А | 10.421 A | 6,014 А |
5 кВт | 30,07 А | 17,348 А | 15.035 А | 13,027 А | 7,518 А |
6 кВт | 36.084 А | 20,818 А | 18.042 А | 15,632 А | 9.021 А |
7 кВт | 42,098 А | 24,288 А | 21.049 А | 18,238 А | 10,525 А |
8 кВт | 48.113 А | 27,757 А | 24,056 А | 20,843 А | 12.028 А |
9 кВт | 54,127 А | 31,227 А | 27.063 А | 23,448 А | 13,532 А |
10 кВт | 60,141 А | 34,697 А | 30,07 А | 26.054 А | 15.035 А |
15 кВт | 90,211 А | 52.045 А | 45,105 А | 39.081 A | 22,553 А |
20 кВт | 120,28 А | 69,393 А | 60,141 А | 52,107 А | 30,07 А |
25 кВт | 150,35 А | 86,741 А | 75,176 А | 65.134 А | 37,588 А |
30 кВт | 180,42 А | 104,09 А | 90,211 А | 78,161 А | 45,105 А |
35 кВт | 210.49 А | 121,44 А | 105,25 А | 91.188 А | 52,623 А |
40 кВт | 240,56 А | 138,79 А | 120,28 А | 104,21 А | 60,141 А |
45 кВт | 270,63 А | 156,13 А | 135,32 А | 117,24 А | 67.658 А |
50 кВт | 300,7 А | 173,48 А | 150,35 А | 130.27 А | 75,176 А |
55 кВт | 330,77 А | 190,83 А | 165,39 А | 143,3 А | 82,693 А |
60 кВт | 360,84 А | 208,18 А | 180,42 А | 156,32 А | 90,211 А |
65 кВт | 390,91 А | 225,53 А | 195,46 А | 169,35 А | 97,729 А |
70 кВт | 420.98 А | 242,88 А | 210,49 А | 182,38 А | 105,25 А |
75 кВт | 451,05 А | 260,22 А | 225,53 А | 195,4 А | 112,76 А |
80 кВт | 481,13 А | 277,57 А | 240,56 А | 208,43 А | 120,28 А |
85 кВт | 511,2 А | 294,92 А | 255,6 А | 221.46 А | 127,8 А |
90 кВт | 541,27 А | 312,27 А | 270,63 А | 234,48 А | 135,32 А |
95 кВт | 571,34 А | 329,62 А | 285,67 А | 247,51 А | 142,83 А |
100 кВт | 601,41 А | 346,97 А | 300,7 А | 260,54 А | 150,35 А |
125 кВт | 751.76 А | 433,71 А | 375,88 А | 325,67 А | 187,94 А |
150 кВт | 902,11 А | 520,45 А | 451,05 А | 390,81 А | 225,53 А |
175 кВт | 1052,5 А | 607,19 А | 526,23 А | 455,94 А | 263,12 А |
200 кВт | 1 202,8 А | 693,93 А | 601,41 А | 521.07 A | 300,7 А |
225 кВт | 1353,2 А | 780,67 А | 676,58 А | 586,21 А | 338,29 А |
250 кВт | 1 503,5 А | 867,41 А | 751,76 А | 651,34 А | 375,88 А |
275 кВт | 1653,9 А | 954,15 А | 826,93 А | 716,48 А | 413,47 А |
300 кВт | 1 804.2 А | 1040,9 А | 902,11 А | 781,61 А | 451,05 А |
325 кВт | 1 954,6 А | 1 127,6 А | 977,29 А | 846,75 А | 488,64 А |
350 кВт | 2104,9 А | 1214,4 А | 1052,5 А | 911,88 А | 526,23 А |
375 кВт | 2255,3 А | 1 301,1 А | 1,127.6 А | 977.01 А | 563,82 А |
400 кВт | 2405,6 А | 1387,9 А | 1 202,8 А | 1042,1 А | 601,41 А |
425 кВт | 2,556 А | 1474,6 А | 1 278 A | 1 107,3 А | 638,99 А |
450 кВт | 2706,3 А | 1561,3 А | 1353,2 А | 1172,4 А | 676.58 А |
475 кВт | 2 856,7 А | 1648,1 А | 1428,3 А | 1237,6 А | 714,17 А |
500 кВт | 3 007 А | 1734,8 А | 1 503,5 А | 1 302,7 А | 751,76 А |
525 кВт | 3 157,4 А | 1821,6 А | 1578,7 А | 1367,8 А | 789,35 А |
550 кВт | 3 307.7 А | 1 908,3 А | 1653,9 А | 1433 А | 826,93 А |
575 кВт | 3 458,1 А | 1 995,1 А | 1729 А | 1498,1 А | 864,52 А |
600 кВт | 3608,4 А | 2081,8 А | 1804,2 А | 1563,2 А | 902,11 А |
625 кВт | 3758,8 А | 2168,5 А | 1,879.4 А | 1628,4 А | 939,7 А |
650 кВт | 3 909,1 А | 2255,3 А | 1 954,6 А | 1693,5 А | 977,29 А |
675 кВт | 4 059,5 А | 2342 А | 2029,7 А | 1758,6 А | 1014,9 А |
700 кВт | 4209,8 А | 2428,8 А | 2104,9 А | 1823,8 А | 1052.5 А |
725 кВт | 4360,2 А | 2515,5 А | 2180,1 А | 1888,9 А | 1090 А |
750 кВт | 4510,5 А | 2 602,2 А | 2255,3 А | 1 954 А | 1 127,6 А |
775 кВт | 4 660,9 А | 2 689 А | 2330,5 А | 2,019,2 А | 1165,2 А |
800 кВт | 4811.3 А | 2775,7 А | 2405,6 А | 2084,3 А | 1 202,8 А |
825 кВт | 4961,6 А | 2 862,5 А | 2480,8 А | 2149,4 А | 1240,4 А |
850 кВт | 5112 А | 2949,2 А | 2,556 А | 2214,6 А | 1 278 A |
875 кВт | 5 262,3 А | 3035,9 А | 2 631.2 А | 2279,7 А | 1315,6 А |
900 кВт | 5 412,7 А | 3 122,7 А | 2706,3 А | 2344,8 А | 1353,2 А |
925 кВт | 5 563 А | 3 209,4 А | 2781,5 А | 2,410 А | 1390,8 А |
950 кВт | 5713,4 А | 3296,2 А | 2 856,7 А | 2475,1 А | 1,428.3 А |
975 кВт | 5863,7 А | 3382,9 А | 2931,9 А | 2540,2 А | 1465,9 А |
1000 кВт | 6 014,1 А | 3469,7 А | 3 007 А | 2605,4 А | 1 503,5 А |
Номинальный ток генератора (однофазный переменный ток)
Мощность | Ток при 120 В | Ток при 240 В |
---|---|---|
1 кВт | 10,417 А | 5,208 А |
2 кВт | 20,833 А | 10,417 А |
3 кВт | 31,25 А | 15,625 А |
4 кВт | 41,667 А | 20,833 А |
5 кВт | 52.083 А | 26.042 A |
6 кВт | 62,5 А | 31,25 А |
7 кВт | 72,917 А | 36,458 А |
8 кВт | 83.333 А | 41,667 А |
9 кВт | 93,75 А | 46,875 А |
10 кВт | 104,17 А | 52.083 А |
15 кВт | 156,25 А | 78,125 А |
20 кВт | 208.33 А | 104,17 А |
25 кВт | 260,42 А | 130,21 А |
30 кВт | 312,5 А | 156,25 А |
35 кВт | 364,58 А | 182,29 А |
40 кВт | 416,67 А | 208,33 А |
45 кВт | 468,75 А | 234,38 А |
50 кВт | 520,83 А | 260.42 А |
55 кВт | 572,92 А | 286,46 А |
60 кВт | 625 А | 312,5 А |
65 кВт | 677.08 А | 338,54 А |
70 кВт | 729,17 А | 364,58 А |
75 кВт | 781,25 А | 390,63 А |
80 кВт | 833,33 А | 416,67 А |
85 кВт | 885.42 А | 442,71 А |
90 кВт | 937,5 А | 468,75 А |
95 кВт | 989,58 А | 494,79 А |
100 кВт | 1041,7 А | 520,83 А |
125 кВт | 1 302,1 А | 651,04 А |
150 кВт | 1562,5 А | 781,25 А |
175 кВт | 1822,9 А | 911.46 А |
200 кВт | 2083,3 А | 1041,7 А |
225 кВт | 2343,8 А | 1171,9 А |
250 кВт | 2 604,2 А | 1 302,1 А |
275 кВт | 2 864,6 А | 1432,3 А |
300 кВт | 3,125 А | 1562,5 А |
325 кВт | 3385,4 А | 1692,7 А |
350 кВт | 3 645.8 А | 1822,9 А |
375 кВт | 3906,3 А | 1 953,1 А |
400 кВт | 4 166,7 А | 2083,3 А |
425 кВт | 4 427,1 А | 2213,5 А |
450 кВт | 4687,5 А | 2343,8 А |
475 кВт | 4947,9 А | 2474 А |
500 кВт | 5 208,3 А | 2 604.2 А |
525 кВт | 5468,8 А | 2734,4 А |
550 кВт | 5729,2 А | 2 864,6 А |
575 кВт | 5 989,6 А | 2994,8 А |
600 кВт | 6250 А | 3,125 А |
625 кВт | 6 510,4 А | 3 255,2 А |
650 кВт | 6770,8 А | 3385,4 А |
675 кВт | 7 031.3 А | 3515,6 А |
700 кВт | 7 291,7 А | 3645,8 А |
725 кВт | 7 552,1 А | 3776 А |
750 кВт | 7 812,5 А | 3906,3 А |
775 кВт | 8 072,9 А | 4036,5 А |
800 кВт | 8 333,3 А | 4 166,7 А |
825 кВт | 8 593,8 А | 4296.9 А |
850 кВт | 8 854,2 А | 4 427,1 А |
875 кВт | 9 114,6 А | 4557,3 А |
900 кВт | 9 375 А | 4687,5 А |
925 кВт | 9 635,4 А | 4817,7 А |
950 кВт | 9895,8 А | 4947,9 А |
975 кВт | 10 156 А | 5 078,1 А |
1000 кВт | 10 417 А | 5,208.3 А |
Киловольт-ампер (кВА) в Ампер
Преобразуйте кВА в амперы (А), указав мощность в кВА и напряжение ниже. По желанию рассчитать для трехфазной электрической цепи, выбрав фазу.
Вы хотите преобразовать усилители в кВА?
Как преобразовать кВА в амперы
кВА , сокращенно от киловольта-ампер, является мерой полной мощности в электрической цепи. 1 кВА соответствует 1000 вольт-ампер и чаще всего используется для измерения полной мощности в генераторах и трансформаторах.
Ампер – это мера электрического тока в цепи.
Для преобразования кВА в амперы нам также потребуется напряжение цепи, а затем мы можем использовать формулу для мощности
Формула для преобразования кВА в амперы:
Ток (А) = Мощность (кВА) × 1000 Напряжение (В)
Это означает, что ток равен кВА, умноженной на 1000, разделенному на напряжение.
Например, давайте найдем ток для цепи 220 В при полной мощности 25 кВА.
Ток (А) = (1000 × 25 кВА) ÷ 220 В
Ток (А) = 113,64 А
Как преобразовать кВА в амперы в трехфазных цепях
Формула для преобразования кВА в амперы в трехфазной цепи выглядит так:
Ток (А) = Мощность (кВА) × 1000√3 × Напряжение (В)
Таким образом, ампер равен 1000-кратной мощности в кВА, деленной на квадратный корень из 3 (1,732) умноженного на напряжение.
Например, давайте найдем ток для трехфазной цепи 440 В с полной мощностью 50 кВА.
Ток (А) = (1000 × 50 кВА) ÷ (1,732 × 440 В)
Ток (А) = 65,608 А
кВА в амперы Таблица преобразования
кВА | кВт | 208 В | 220 В | 240 В | 440 В | 480 В |
---|---|---|---|---|---|---|
6,3 кВА | 5 кВт | 17.5 А | 16,5 А | 15,2 А | 8,3 А | 7,6 А |
9,4 кВА | 7,5 кВт | 26,1 А | 24,7 А | 22,6 А | 12,3 А | 11,3 А |
12,5 кВА | 10 кВт | 34,7 А | 32,8 А | 30,1 А | 16,4 А | 15 А |
18,7 кВА | 15 кВт | 51,9 А | 49.1 А | 45 А | 24,5 А | 22,5 А |
25 кВА | 20 кВт | 69,4 А | 65,6 А | 60,1 А | 32,8 А | 30,1 А |
31,3 кВА | 25 кВт | 86,9 А | 82,1 А | 75,3 А | 41,1 А | 37,6 А |
37,5 кВА | 30 кВт | 104 А | 98,4 А | 90.2 А | 49,2 А | 45,1 А |
50 кВА | 40 кВт | 139 А | 131 А | 120 А | 65,6 А | 60,1 А |
62,5 кВА | 50 кВт | 173 А | 164 А | 150 А | 82 А | 75,2 А |
75 кВА | 60 кВт | 208 А | 197 А | 180 А | 98,4 А | 90.2 А |
93,8 кВА | 75 кВт | 260 А | 246 А | 226 А | 123 А | 113 А |
100 кВА | 80 кВт | 278 А | 262 А | 241 А | 131 А | 120 А |
125 кВА | 100 кВт | 347 А | 328 А | 301 А | 164 А | 150 А |
156 кВА | 125 кВт | 433 А | 409 А | 375 А | 205 А | 188 А |
187 кВА | 150 кВт | 519 А | 491 А | 450 А | 245 А | 225 А |
219 кВА | 175 кВт | 608 А | 575 А | 527 A | 287 А | 263 А |
250 кВА | 200 кВт | 694 А | 656 А | 601 А | 328 А | 301 А |
312 кВА | 250 кВт | 866 А | 819 А | 751 А | 409 А | 375 А |
375 кВА | 300 кВт | 1,041 А | 984 А | 902 А | 492 А | 451 А |
438 кВА | 350 кВт | 1,216 А | 1,149 А | 1,054 А | 575 А | 527 A |
500 кВА | 400 кВт | 1388 А | 1,312 А | 1 203 А | 656 А | 601 А |
625 кВА | 500 кВт | 1,735 А | 1,640 А | 1 504 А | 820 А | 752 А |
750 кВА | 600 кВт | 2082 А | 1 968 А | 1 804 A | 984 А | 902 А |
875 кВА | 700 кВт | 2429 А | 2,296 А | 2105 А | 1,148 А | 1052 А |
1000 кВА | 800 кВт | 2776 А | 2 624 А | 2,406 А | 1,312 А | 1 203 А |
1,125 кВА | 900 кВт | 3,123 А | 2,952 А | 2706 A | 1,476 А | 1,353 А |
1250 кВА | 1000 кВт | 3 470 А | 3 280 А | 3 007 А | 1,640 А | 1 504 A |
1563 кВА | 1250 кВт | 4 338 А | 4 102 А | 3760 А | 2,051 А | 1880 А |
1875 кВА | 1500 кВт | 5 204 А | 4 921 А | 4511 A | 2,460 А | 2,255 А |
2188 кВА | 1750 кВт | 6 073 А | 5742 А | 5 264 A | 2 871 A | 2 632 А |
2500 кВА | 2000 кВт | 6 939 A | 6 561 А | 6 014 А | 3 280 А | 3 007 А |
2,812 кВА | 2250 кВт | 7 805 А | 7,380 А | 6 765 А | 3 690 А | 3 382 А |
Возможно, вас заинтересуют наши вольт-амперы или калькуляторы киловатт-ампер.
.Конвертер величинкиловатт (кВт) в вольт-амперы (VA)
Калькуляторкиловатт (кВт) в вольт-амперы (ВА).
Введите реальную мощность в киловаттах и мощность коэффициент и нажмите кнопку Calculate , чтобы получить полную мощность в вольт-амперах:
Введите киловатт: | кВт | |
Введите коэффициент мощности: | ||
Результат в вольтах: | ВА |
ВА в кВт ►
РасчеткВт в ВА
Полная мощность S в вольт-амперах (ВА) равна 1000-кратной реальной мощности P в киловаттах (кВт), деленной на коэффициент мощности PF:
S (ВА) = 1000 × P (кВт) / PF
РасчеткВт в ВА ►
См. Также
- Как преобразовать кВт в VA
- ВА в кВт калькулятор
- Ватт (Вт)
- Электрический расчет
- Преобразователь мощности
Кулонов (C) в ампер-часы (Ач)
Кулоны (Кл) в ампер-часы (Ач) калькулятор преобразования электрического заряда и как преобразовать.
Калькулятор кулонов в ампер-часы
Введите электрический заряд в кулонах и нажмите кнопку Преобразовать :
Ач в кулоны калькулятор преобразования ►
Как перевести кулоны в ампер-часы
1C = 2,7778⋅10 -4 Ач
или
1 Ач = 3600 ° C
Кулоны в ампер-часы, формула
Заряд в ампер-часах Q (Ач) равен заряду в кулонах Q (Кл) , деленному на 3600:
Q (Ач) = Q (C) /3600
Пример
Перевести 3 кулона в ампер-часы:
Q (Ач) = 3C / 3600 = 8.333⋅10 -4 Ач
Таблица кулонов в ампер-часы
Заряд (кулон) | Заряд (ампер-часы) |
---|---|
0 С | 0 Ач |
1 С | 0,00027778 Ач |
10 С | 0,00277778 Ач |
100 К | 0,02777778 Ач |
1000 С | 0,27777778 Ач |
10000 К | 2,777777778 Ач |
100000 К | 27.777777778 Ач |
1000000 К | 277.777777778 Ач |
Ач в кулоны ►
См. Также
.Конвертер величинвольт-ампер (VA) в амперы (A)
КалькуляторВольт-ампер (ВА) в ампер (А) и способ его расчета.
Введите номер фазы, полную мощность в вольтах, напряжение в вольт и нажмите кнопку Рассчитать ,
для получения тока в амперах:
КалькуляторАмпер в ВА ►
Формула для расчета однофазных ВА и ампер
Ток I в амперах равен полной мощности S в вольт-амперах, деленной на напряжение V в вольтах:
I (А) = S (ВА) / В (В)
3-фазная формула расчета от кВА до ампер
Ток I в амперах равен 1000 полной мощности S в вольт-амперах, деленной на квадратный корень из 3-кратного линейного напряжения V L-L в вольтах:
I (A) = S (ВА) / ( √ 3 × В L-L (В) ) = S (ВА) / (3 × В L-N (В) )
РасчетВА в амперах ►
См. Также
.Калькулятор преобразованияВт / В / А / Ом
Ватт (Вт) – вольт (В) – амперы (А) – калькулятор Ом (Ом).
Рассчитывает мощность / вольтаж / текущий / сопротивление.
Введите 2 значений , чтобы получить другие значения, и нажмите кнопку Calculate :
КалькуляторАмпер в ватт ►
Расчет Ом
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
Сопротивление R в омах (Ом) равно квадрату напряжения V в вольтах (В), деленному на мощность P в ваттах (Вт):
Сопротивление R в омах (Ом) равно мощности P в ваттах (Вт), деленной на квадрат тока I в амперах (A):
Расчет ампер
Ток I в амперах (A) равен напряжению V в вольтах (V), деленному на сопротивление R в омах (Ω):
Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):
Ток I в амперах (A) равен квадратному корню из мощности P в ваттах (Вт), деленному на сопротивление R в омах (Ом):
Расчет вольт
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
Напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):
Расчет ватт
Мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A):
Мощность P в ваттах (Вт) равна квадрату напряжения V в вольтах (В), деленному на сопротивление R в омах (Ом):
Мощность P в ваттах (Вт) равна квадрату тока I в амперах (А), умноженному на сопротивление R в омах (Ом):
Калькулятор закона Ома ►
См. Также
.Перевод ампер в киловатты и киловатт в амперы
Связь мощности и тока в трехфазной сети
Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.
В качестве базового соотношения традиционно берется выражение:
W =1,73* U*I, (4)
причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.
Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.
Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.
Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:
- один кВт соответствует 1,5 А потребляемого тока;
- один ампер соответствует мощности 0,66 кВт.
Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.
Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.
Как перевести амперы в ватты
Однако на практике встречается и задача обратная.
Например, купили новый прибор, скажем, посудомойку в 2000 ватт на кухню. Включили — и сразу автомат защиты на щитке сработал, и все выключилось. Это значит, что суммарный ток на всех электропотребительных приборах превысил номинал автомата. А на нем написано «16 ампер». Ну и где найти конвертер, чтобы, зная мощности всего, что включено в розетки, определить суммарный ток?
Хорошо, у нас было:
- холодильник на 500 Вт,
- микроволновка на 1500 Вт,
- одна лампочка на 100 ватт и две по 70 ватт (лампочка на 12 вольт в холодильнике не в счет) — и вот купили теперь посудомойку. Надо все это взять и конвертировать в амперы, вырубившие нам автомат.
Так как все приборы подключены параллельно к одному и тому же напряжению в 220 вольт, можно суммировать все мощности и разделить на это напряжение.
Nсум.до = 500 + 1500 + 100 + 70 + 70 = 2240 Вт.
Это была мощность до нового приобретения. Ток суммарный был
Iсум.до = 2240/220 = 10,18 ампер
После добавления посудомойки мощность и ток стали:
Nсум. = 2240 +2000 = 4240 ватт
Iсум. = 4240/220 = 19,273 ампер.
Теперь понятно, почему 16-амперный автомат вырубило.
Осталось решить, что делать дальше: развести наши приборы по разным розеточным сетям с разными автоматами, протянуть ли посудомоечной машине индивидуальную линию питания с отдельным автоматом или просто поставить автомат номиналом повыше.
Вот таблица номиналов защитных автоматов, показывающая, до каких токов можно нагружать автоматы.
Таблица номиналов защитных автоматов
В нашем случае подойдет 20-амперный. Однако полученная нами суммарная мощность в 4240 ватт (4,24 кВт) очень близка к порогу его отключения 4,4 кВт. Стоит включить, допустим, электрический чайник, и мы по току опять выйдем за пределы контрольного диапазона автомата. Придется выбирать следующий по номиналу — 25 А.
Теперь можно добавлять еще мощностей, до 5,5 кВт наш автомат выдержит.
Однако нужно еще иметь в виду, что проводка в квартирах обычно устаревшая, и возросший ток ей может оказаться совсем не по зубам.
Поэтому хорошо иметь у себя небольшой калькулятор, позволяющий делать быстрые прикидки. Зная, сколько ватт (или киловатт) в подключаемых приборах, находить ток и выбирать наиболее приемлемое решение.
Калькулятор выполнен в Excel. Им можно воспользоваться, если на него кликнуть. Вводить в нем нужно только одно значение — суммарную мощность потребителей электрической сети (самая верхняя строчка). Он делает расчет суммарного тока (ячейка B3, точность 10 миллиампер), который будет питать такую мощность при 220 вольтах.
Суммировать мощности приборов совсем не обязательно самому. Достаточно ввести в ячейке сумму, как это принято в Excel, в виде
Номинаты автомата
Номиналы автоматов, которые не смогут выдержать такого тока, будут автоматически отмечены слева от них красными крестиками. Следовательно, первый из подходящих автоматов – следующий, то есть для нашего примера 20. Хотя мы выбрали 25 А.
Пересчет мощности в ток для однофазной сети
Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.
На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.
Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.
При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).
Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:
- W = 2,8*1000 = 2800 Вт;
- I = W/220 = 12,7 А.
Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).
Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.
Какая взаимосвязь между показателями силы тока, напряжения и потребляемой мощности?
Для начала – буквально несколько слов о природе этих величин.
- Напряжение – это разность электрических потенциалов между двумя точками цепи. А потенциал, упрощенно – количество заряда, то есть, по сути, показатель энергии в данной точке. Измеряется в вольтах (В).
- При наличии разности потенциалов (то есть напряжения) при замыкании цепи по ней начинает протекать ток – направленное движение электрически заряженных частиц. Показатель силы тока – это количество заряда, прошедшее через какую-то точку в единицу времени (в секунду). Единицы измерения — амперы (А).
- Наконец, конечная цель электрического тока в приборах и устройствах – это выполнение определенной работы, связанной либо с перемещением самого заряда, либо с преобразованием в другие виды энергии – тепловую, кинетическую, волновую и т.п. Количество этой работы, выполненное за единицу времени (за секунду), как раз и является электрической мощностью. Единица измерения – ватт (Вт).
Для любой из упомянутых величин имеются производные величины, показывающие десятичную разрядность. Весь «спектр» знать необязательно, но в наиболее часто используемых — разбираться надо:
- микро…(мк или µ) — n×0.000 001
- милли…(м) — n×0.001
- кило… (к) — n×1 000
- мега… (М) — n×1 000 000
Например, показатель мощности в 3.2 кВт – не что иное, как 3200 Вт
При проведении расчетов все величины должны быть приведены к одинаковым по десятичному разряду производным. Обычно на бытовом уровне оперируют «чистыми» величинами, и только показатель мощности, если он достаточно высокий, указывают в результате в киловаттах.
Взаимосвязь этих трех величин в упрощенном виде для цепи постоянного тока описывается следующей формулой:
P = U × I
где:
P — мощность, Вт;
U — напряжение, В;
I — сила тока, А.
Как видно, провести расчет, зная эту формулу – труда не составит.
Особенности выполнения расчетов автоматов
Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.
Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.
Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:
- формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
- в технических данных этих устройств находят мощность;
- с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W /220;
- по величине общего тока определяют номинал автомата.
Проиллюстрируем приведенную методику примером.
Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:
- настольную лампу мощностью 60 Вт;
- торшер с двумя лампами по 60 Вт;
- напольный кондиционер мощностью 1,7 кВт;
- персональный компьютер с мощностью потребления 600 Вт.
Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.
Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.
Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.
Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.
Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:
I = 2280/230 = 10,8 А.
Если воспользоваться методом экспресс-оценки, то мощность вычисляем уже как 0,06 + 2*0,06 + 1,7*1 + 0,6 = 2,48 кВт и в соответствии с правилом 4,5 А/кВт получаем довольно близкое значение 11,2 А.
Таблица.
Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.
Также можно воспользоваться калькулятором перевода ватт в амперы.
Единицы мощности
Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.
Соотношение с основными и кратными единицами мощности
Ватт относится к производной единице измерения мощности, поэтому на практике иногда требуется определить значение параметра по отношению к основным единицам международной системы СИ. В технических расчетах используются следующие соответствия основным величинам:
- Вт = кгм²/с³;
- Вт = Hм/с;
- Вт = В·А.
Параметр имеет универсальное применение и в равной степени используется в технических разработках самых различных сфер деятельности.
В теплотехнике используется, не входящая в международную систему СИ, единица измерения тепловой мощности 1 кал/час. Наша рассматриваемая величина связана с ней соотношением: 1 Вт = 859,85 кал/час.
Часто для удобства оперирования большими величинами мощности энергоустановок и силовых агрегатов слово ватт может использоваться с приставками «мега» или «гига»:
- мегаватт обозначается МВт/MW и соответствует 106Вт;
- гигаватт (сокращенно ГВт/GW) равняется 109Вт.
Наоборот, в слаботочных информационных сетях, электронных гаджетах и современной радиоэлектронной аппаратуре мощность измеряется в дольях ватта:
- милливатт (мВт, mW) составляет 10-3 Вт;
- микроватт (мкВт, µW) равняется 10-6 Вт.
Воспользовавшись этими соотношениями, можно всегда перевести большинство параметров в требуемые единицы мощности.
Перевести мегаватты в киловатты онлайн. Сколько киловатт в мегаватте?
Округлять до {$ round $} {$ Plural(round, ) $} после запятой
Для того, чтобы узнать, сколько в мегаватте киловатт, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество мегаватт, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести мегаватты или киловатты в другие единицы измерения, просто кликните по соответствующей ссылке.
Что такое «мегаватт»
Мегаватт (сокращенно МВт) – является десятичной кратной производной единицы мощности в Международной системе единиц (СИ) ватт и равняется одному миллиону (106) ватт. Многие процессы и техника производят или поддерживают преобразование энергии именно в таком масштабе, в том числе крупные электродвигатели, большие военные корабли, такие как авианосцы, крейсеры и подводные лодки, большие серверные системы и центры обработки данных, некоторое научно-исследовательское оборудование, как, например, суперколайдеры, импульсы очень больших лазеров. Большой жилой дом или офисное здание способны использовать несколько мегаватт электрической и тепловой энергии. На железных дорогах современные мощные электровозы имеют пиковую выходную мощность от 3 или 6 МВт. При этом мощности типичной ветровой турбины составляет до 1,5 МВт.
Что такое «киловатт»
Киловатт (сокращенно кВт) – это десятичная кратная производной единицы мощности в Международной системе единиц (СИ) ватта, которая равняется 1000 Вт. Один киловат определяется, как мощность, при которой за 1 секунду времени совершается работа в 1000 джоулей. Название единицы измерения происходит от древнегреческого chilioi – тысяча и фамилии шотландско-ирландского изобретателя паровой машины Джеймса Уатта (Ватта). Эту единицу измерения как правило используют для выражения выходной мощности двигателей и мощности электродвигателей, инструментов, электрооборудования и обогревателей. Кроме того, в киловаттах зачастую выражают электромагнитную выходную мощность вещания радио- и телевизионных передатчиков. Небольшой электрический нагреватель с одним нагревательным элементом использует приблизительно 1 кВт, а мощность электрических чайников колеблется от 1 до 3 кВт. Один квадратный метр поверхности Земли, как правило, получает около 1 кВт солнечного света.
Разузнай! — Что такое киловатты? — Сколько в киловатте ампер? Как перевести киловатты в лошадиные силы
Что такое киловатты?
Ватт – количественный показатель мощности в системе единиц СИ. Она указывает на то, какая мощность потребуется, чтобы выполнить работу в 1Дж за единицу времени. Также ее используют при обозначении количества энергии, потребляемой прибором за временной отрезок. Киловатт – это все та же единица измерения, но с приставкой «кило», которая обозначает условное умножение на 1000.
Название «ватт» было позаимствовано у исследователя, который впервые открыл ее – физик Джеймс Ватт. Такой «перенос» имени ученого на открытую им единицу, был первым в истории науки. Далее такое явление стало встречаться чаще.
Многие люди по ошибке путают киловатты с киловатт*часами. Но это абсолютно разные понятия, которые характеризуют не одинаковые физические явления.
Киловатт*час – измерительная единица, указывающая на количественный показатель, выполняемой прибором за один час, работы. Ватты указывают на количество энергии, потребляемой прибором за временную единицу. То есть, понятия практически противоположенные. В первом случае мы получаем количественную оценку результат работы, а во втором – количественную оценку затрат. Поэтому сравнение, а тем более отожествление обоих единиц измерения, абсолютно неправильно.
Для лучшего понимания, рассмотрим всем известную лампочку с мощностью в 60 ватт. Продолжительность ее работы — 2 часа, то есть для этого потребовалось 60Ватт*2 ч. = 120 киловатт*час.
Сколько в киловатте ампер?
Для определения, сколько в киловатте ампер использую закон Ома. Для цепей постоянного тока мощность рассчитывается, как P=I*U, т.е. например, Ватт = Ампер * Вольт, Ампер = Ватт / Вольт.
Для однофазного переменного тока 220 В/50 Гц с номинальным напряжением (Uм = 220В), действующее значение U вычисляется по следующей формуле U=Uм * (корень из 2), таким образом U = 220 * 1,41 = 314В.
Так как номинальное значение напряжения импульсного, или переменного тока равно напряжению постоянного тока при действии активной нагрузки, то рассмотрим значения пример на 220 В.
Для цепей постоянного напряжения (иногда говорят постоянного тока):
- при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 220 Вт;
- при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 4,55А.
Для цепей переменного напряжения:
- при номинальном напряжении в 220 В и силе тока равной 1А мощность соответствует 154 Вт;
- при номинальном напряжении в 220 В и мощности равной 1 кВт — приближенно 6,49 А.
В России в розетках напряжение переменное.
Например для чайника мощностью 2 кВт в случае подключения его к нашей розетке с перменным током напряженностью 220 Вольт ток который будет идти по проводам равен 2 кВт \ 220 = 13 А. Это сильный ток и провода должны его выдержать. Учитывайте это. Тонкие или алюминиевые провода могут сильно греться и привести к всяческим возгораниям.
Перевод киловатт в лошадиные силы
Лошадиная сила – это внесистемная измерительная единица мощности, которая в настоящее время зачастую используется только относительно техники, которая работает на двигателях внутреннего сгорания. Поэтому мы частенько встречаемся с этим понятием и для оценки мощности мы должны уметь переводить л.с. в ватты. Для этого существует специальный пересчеточный коэффициент:
- 1 кВт = 1, 3596 л.с. или «лошадка», как называют ее в народе.
- 1 л.с. = 0,7355 кВт.
В такой вот нехитрый способ можно перевести киловатты в «лошадки» и обратно. Но таким образом пересчитывается лишь метрическая лошадиная сила. Помимо данного типа существуют еще и другие. Но сейчас встретить их на производстве или в быту практически невозможно.
- Акриловые ванны >
Таблица вычисления
Чтобы перевести амперы в киловатты или наоборот есть специальная таблица. Используя ее, можно быстро и без особых проблем найти нужное значение.
Выглядит таблица вычисления примерно так:
Используя эту таблицу, можно без проблем провести нужные замеры и определить требуемое для конкретных целей значение.
Это важно! Для конвертации этих двух величин одна в другую, пользователю необходимо знать, под каким напряжением работает тот или другой аппарат, ведь без этого выполнить правильные вычисления невозможно. Но прежде чем переводить эти значения, нужно знать, что каждое из них конкретно обозначает
Так вот, амперы являются единицей измерения силы, которую имеет электрический ток, а киловаттами меряется мощность. Эти показатели обязательно знать необходимо, при подборе соответственного защитного или другого электрического оборудования, для пользования
Но прежде чем переводить эти значения, нужно знать, что каждое из них конкретно обозначает. Так вот, амперы являются единицей измерения силы, которую имеет электрический ток, а киловаттами меряется мощность. Эти показатели обязательно знать необходимо, при подборе соответственного защитного или другого электрического оборудования, для пользования.
Основные правила при переводе амперов в киловатты в трехфазных сетях
В этом случае основные формулы будут такие:
- Для начала для расчета Ватта, необходимо знать, что Ватт= √3*Ампер*Вольт. Из этого получается такая формула: P = √3*U*I.
- Для правильного подсчета Ампера, нужно склоняться к таким расчетам:
Ампер = Ват/ (√3 * Вольт), получаем I= P/√3 *U
Можно рассмотреть пример с чайником, он заключается в таком: есть определенный ток, он проходит по проводке, тогда когда начинает свою работу чайник с мощностью два киловатта, а также имеет переменную электроэнергию 220 вольт. Для такого случая, необходимо использовать такую формулу:
I = P/U= 2000/220 = 9 Ампер.
Если рассматривать данный ответ, можно сказать о нем, что это маленькое напряжение. При подборке шнура, который будет использоваться, необходимо верно и умно подобрать его сечения. Например, шнур из алюминия выдерживает на много меньшие нагрузки, а вот медный провод с таким же сечением выдерживает нагрузку в два раза мощнее.
Поэтому, чтобы произвести правильный расчет и перевод амперов в киловатты, необходимо придерживаться выше наведенных формул. Также следует быть предельно осторожными в работе с электрическими приборами, чтобы не навредить своему здоровью и не испортить данный агрегат, который будет использоваться в дальнейшем.
Из школьного курса физики всем нам известно, что силу электротока измеряют в амперах, а механическую, тепловую и электрическую мощность – в ваттах. Данные физические величины связаны между собой определенными формулами, но так как они являются разными показателями, то просто взять и перевести их друг в друга нельзя. Для этого нужно одни единицы выразить через другие.
Мощность электротока (МЭТ) – это количество работы, совершенной за одну секунду. Количество электричества, которое проходит через поперечное сечение кабеля за одну секунду называется силой электротока. МЭТ в таком случае это прямо пропорциональная зависимость разности потенциалов, иными словами напряжения, и силы тока в электрической цепи.
Теперь разберемся, как же соотносятся сила электротока и мощность в различных электрических цепях.
Нам понадобится следующий набор инструментов:
- калькулятор
- электротехнический справочник
- токоизмерительные клещи
- мультиметр или аналогичный прибор.
Алгоритм пересчета А в кВт на практике следующий:
1.Измеряем с помощью тестера напряжения в электрической цепи.
2.Измеряем с помощью токоизмерительных ключей силу тока.
3.При постоянном напряжении в цепи величина тока умножается на параметры напряжения сети. В результате мы получим мощность в ваттах. Для перевода ее в киловатты, делим произведение на 1000.
4.При переменном напряжении однофазной электросети величина тока умножается на напряжение сети и на коэффициент мощности (косинус угла фи). В результате мы получим активную потребляемую МЭТ в ваттах. Аналогичным образом переводим значение в кВт.
5.Косинус угла между активной и полной МЭТ в треугольнике мощностей равен отношению первой ко второй. Угол фи – это сдвиг фаз между силой тока и напряжением. Он возникает в результате индуктивности. При чисто активной нагрузке, например, в лампах накаливания или электрических нагревателях, косинус фи равняется единице. При смешанной нагрузке его значения варьируются в пределах 0,85. Коэффициент мощности всегда стремиться к повышению, так как, чем меньше реактивная составляющая МЭТ, тем меньше потери.
6.При переменном напряжении в трехфазной сети параметры электротока одной фазы умножается на напряжение этой фазы. Затем рассчитанное произведение умножается на коэффициент мощности. Аналогичным образом производится расчет МЭТ других фаз. Далее все значения суммируются. При симметричной нагрузке общая активная МЭТ фаз равняется утроенному произведению косинуса угла фи на фазный электроток и на фазное напряжение.
Отметим, что на большинстве современных электрических приборов, сила тока и потребляемая МЭТ уже указана. Найти эти параметры можно на упаковке, корпусе или в инструкции. Зная исходные данные, перевести амперы в киловатты или амперы в киловатты дело нескольких секунд.
Для электроцепях с переменным током существует негласное правило: для того, чтобы получить приблизительное значение мощности при расчете сечений проводников и при выборе пусковой и регулирующей аппаратуры, нужно значения силы тока разделить на два.
Как перевести Амперы в Киловатты
Часто возникает проблема с подбором автоматов для определённой нагрузки. Совершенно понятно, что для освещения нужен один автомат, а для розеточной группы – более мощный.
Возникает вполне логический вопрос и проблема как перевести Амперы в Киловатты
. Благодаря тому, что в Украине напряжение в электрической сети переменное, существует возможность самостоятельно рассчитать соотношение Ампер \ Ватт, используя нижеприведённую информацию.
Как перевести амперы в киловатты в однофазной сети
Ватт = Ампер * Вольт:
Ампер = Ватты / Вольт:
Для того чтобы Ватты (Вт) перевести в киловатты (кВт) нужно полученное значение разделить на 1000. То есть в 1000 Вт = 1 кВт.
Как перевести амперы в киловатты в трехфазной сети
Ватт = √3 * Ампер * Вольт:
Ампер = Ватты / (√3 * Вольт):
Итак, например, рассчитывая ток, который будет течь по проводам при включении электрического чайника мощностью 2 кВт (2000 Ватт) и с переменным напряжением в сети 220 Вольт, следует применить следующую формулу. Разделить 2 КВт на 220 вольт. В итоге получим 9 – это и будет количество Ампер.
По сути это не малый ток, поэтому, подбирая кабель, следует учитывать его сечение. Провода, изготовленные из алюминия могут выдерживать значительно меньшие нагрузки, чем медные того же сечения.
200?»200px»:»»+(this.scrollHeight+5)+»px») дано: t = 24 часа * 30 дней, I = 112 ампер, U = 220 вольтт 50 герц, P =.
Электрический прибор — трансформатор работает 24 часа в сутки * 30 дней, обеспечивает 40 потребителей. Мощность трансформатора = 112 ампер, нужно перевести амперы в киловатты (т.к. оплата за кВт/часы) и узнать рекомендованое потребление кВт в 30 дней каждым потребителем. Нужно найти P, (возможно по формуле P = IU -не уверен), P — перевести в киловатты. Найденое P, за период 30 дней разделить на 40 единиц.
Частный сектор, поставщик переменного тока РЭС. На трансформаторе стоит 100 амперный счётчик + 100 амперный пакетник, напряжение 3 фазы — 220 вольт 50 герц. После замеров по трём фазам выведена суммарная загрузка главного трёхфазного 100 амперного пакетника на трансформаторе = 112 ампер. Увеличена нагрузка в зимнее время, связанная с отоплением электрокотлами — часто выбивает пакетник на трансформаторе, а из дома в два часа ночи не каждый захочет выходить чтобы включить рубильник. Решили рассчитать рекомендованое потребление электроэнергии, каждого электропользователя:
1) _- как это сделать?
2) _ — нужно перевести амперы в киловатты.
Искал в иннете при переводе ампер в киловатты, для дизельных электростанций малой и средней мощности существует определенный поправочный коэффициент, который составляет 0,8 Может быть знающие форумчане подскажут решение перевода ампер в киловатты или поправочный коэффициент для трёхфазного электротрансформатора переменоого тока.
У вас может выбивать автомат из-за перекоса нагрузок по фазам, 112 А ничего не говорит, нужны нагрузки общие по каждой фазе, тогда будет яснее картина.
Сколько ампер в токе в цепи
Когда мы подключаем к сети электрический прибор, он начинает потреблять ток, который измеряется в амперах. Ток — это направленное движение носителей электрического заряда в проводнике. В данном случае движение электронов в том самом приборе, который мы только что подключили. Но и не только в нем, а еще и в проводах, которыми мы его включили в сеть. Но и не только в них. Дело в том, что когда мы включаем, скажем, утюг в розетку, то нам кажется, что ток побежал от одного полюса розетки через утюг к другому. При этом совсем не думая, что и за пределами розетки, и вообще, за пределами нашей квартиры, ток, от которого на утюге сразу же загорелась лампочка, а сам он начал разогреваться, влился в громадную реку токов, бегущих от электростанции с ее генераторами по проводам всех соединяющих линий к нашему городу и разбегающихся ручьями по всем домам и квартирам.
Да нам это и не важно. У нас есть розетка, к которой энергосистема подвела стандартное в нашей стране напряжение в 220 вольт
И ток, который побежал по проводу в утюг, обусловлен ничем иным, как самим этим прибором. То есть, бывают утюги маленькие и есть побольше, есть большие промышленные. И чем больше утюг, тем больше тока через него потечет, когда его включают. Грубо говоря, от тока зависит скорость разогрева, но это тоже не совсем так. Скорость эта зависит еще и от того, какую массу металла ток разогревает. Чем тяжелее утюг, тем медленнее он может быть разогрет одним и тем же током.
Перевести киловольт-амперы в киловатты онлайн. Сколько киловатт в киловольт-ампере?
Округлять до {$ round $} {$ Plural(round, ) $} после запятой
Для того, чтобы узнать, сколько в киловольт-ампере киловатт, необходимо воспользоваться простым онлайн калькулятором. Введите в левое поле интересующее вас количество киловольт-ампер, которое вы хотите конвертировать. В поле справа вы увидите результат вычисления. Если необходимо перевести киловольт-амперы или киловатты в другие единицы измерения, просто кликните по соответствующей ссылке.
Что такое «киловольт-ампер»
Киловольт-ампер (сокращенно кВА) – единица измерения полной мощности в электрической цепи кратная единице измерения Международной системе единиц (СИ) вольт-амперу. Киловольт-ампер используются только в контексте цепей переменного тока, так как в этом случае значения в киловольт-амперах и в киловаттах будет отличаться, а вот в цепях постоянного тока показатель в киловольт-амперах будет равен показателю мощности в киловаттах. Для некоторых устройств, в том числе блоков бесперебойного питания (UPS), граничная мощность указывается и в ватах, и в вольт-амперах.
Что такое «киловатт»
Киловатт (сокращенно кВт) – это десятичная кратная производной единицы мощности в Международной системе единиц (СИ) ватта, которая равняется 1000 Вт. Один киловат определяется, как мощность, при которой за 1 секунду времени совершается работа в 1000 джоулей. Название единицы измерения происходит от древнегреческого chilioi – тысяча и фамилии шотландско-ирландского изобретателя паровой машины Джеймса Уатта (Ватта). Эту единицу измерения как правило используют для выражения выходной мощности двигателей и мощности электродвигателей, инструментов, электрооборудования и обогревателей. Кроме того, в киловаттах зачастую выражают электромагнитную выходную мощность вещания радио- и телевизионных передатчиков. Небольшой электрический нагреватель с одним нагревательным элементом использует приблизительно 1 кВт, а мощность электрических чайников колеблется от 1 до 3 кВт. Один квадратный метр поверхности Земли, как правило, получает около 1 кВт солнечного света.
Как перевести ватты в амперы
После того как написал статью про 16А (Ампер), несколько человек мне задали вопрос о переводе других значений в киловатты и наоборот. Например — нужно рассчитать выдержит ли розетка или вилка напряжение. Также такие расчеты нужны для крупных бытовых приборов — купили вы водонагреватель, а можно ли его включать в розетку? Вообще по правилам нужно ставить перед ним автомат, вот только его мощность идет в амперах, а мощность нагревателя в Ваттах, как их совместить? Как рассчитать? Читаем дальше …
Действительно все бытовые приборы имеют значение потребляемой мощности в Ваттах, а точнее серьезная техника в Киловаттах (если не учитывать всякие блендеры, миксеры и прочие мелкие приборы).
Однако вы купили, скажем, обогреватель (ну или водонагреватель), потребляет он 2000 Вт, или 2 кВт.
А розетка, в которую он включается, выдерживает мощность в 16 Ампер! Можно ли включать это устройство в этот разъем? Не расплавится ли она?
Ответ тут прост – переходим к курсу физики, наверное, за 7 класс.
Как рассчитать Ватты
P (Вт) = I (А) х U (Напряжение)
Как рассчитать Амперы
I (А) = P (Вт)/ U (Напр.)
Что это означает в реальности?Давайте на примерах — мощность обогревателя у нас 2000 Вт (кстати, на зарубежной продукции она обозначается английской буквой «W»), включается в обычную сеть в 220 Вольт, нужно перевести в «А». Для этого берем – 2000/220 = 9,09А. То есть наша обычная розетка в 16А справится с этой нагрузкой с лихвой.
Теперь какую максимальную нагрузку может выдержать наша розетка в 16А. Просто берем 16 Х 220В = 3520Вт (3,52кВт). Лучше больше 3,5кВт не включать, это практически уже предел!
Как видите все просто.
Про 380 ВольтЕсли нужны расчеты для 380В – то это напряжение умножаем на нужный «ампераж» или наоборот. Мощность делим на 380В.
Примеры:
- 380ВХ16А=6080Вт
- 10000Вт/380В=26,32А
Такие розетки имеют совершенно другую структуру, поэтому они редко применяются в квартирах, ну если только для электрических плит.
Если лень считать выкладываю вам таблицу расчетов, просто подставляем свои значения и получите нужный результат.
На этом все, читайте наш строительный сайт, будет еще много полезного.
Как перевести амперы в ватты
Не каждая домохозяйка сразу сообразит, как перевести амперы в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы. Для чего это может потребоваться? Например, на розетке или на вилке указаны такие цифры: «220В 6А» — маркировка, отражающая предельно допустимую мощность подключаемой нагрузки. Что это значит? Какой максимальной мощности сетевой прибор можно включить в такую розетку или использовать с данной вилкой?
Чтобы получить значение мощности, достаточно перемножить две эти цифры: 220*6 = 1320 ватт — максимальная мощность для данной вилки или розетки. Скажем, утюг с паром можно будет использовать только на двойке, а масляный обогреватель — только в половину мощности.
Итак, чтобы получить ватты, нужно указанные амперы умножить на вольты: P = I*U – ток умножить на напряжение (в розетке у нас примерно 220-230 вольт). Это главная формула для нахождения мощности в однофазных электрических цепях.
Что такое сила тока:
Переводим ватты в амперы
Или случай, когда мощность в ваттах нужно перевести в амперы. С такой задачей сталкивается, например, человек, решивший выбрать защитный автомат для водонагревателя.
На водонагревателе написано, допустим, «2500 Вт» — это номинальная мощность при сетевых 220 вольтах. Следовательно, чтобы получить максимальные амперы водонагревателя, разделим номинальную мощность на номинальное напряжение, и получим: 2500/220 = 11,36 ампер.
Итак, можно выбрать автомат на 16 ампер. 10 амперного автомата будет явно не достаточно, а автомат на 16 ампер сработает сразу, как только ток превысит безопасное значение. Таким образом, чтобы получить амперы, нужно ватты разделить на вольты питания — мощность разделить на напряжение I = P/U (вольт в бытовой сети 220-230).
Сколько ампер в киловатте и сколько киловатт в ампере
Бывает часто, что на сетевом электроприборе мощность указана в киловаттах (кВт), тогда может потребоваться перевести киловатты в амперы. Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер. Верно для сети и обратное утверждение: в одном ампере 0,22 кВт, потому что P = I*U = 1*220 = 220 Вт = 0,22 кВт.
Для приблизительных расчетов можно учитывать то, что при однофазной нагрузке номинальный ток I ≈ 4,5Р, где Р — потребляемая мощность и киловаттах. Например, при Р = 5 кВт, I = 4,5 х 5 = 22,5 А.
Как быть, если сеть трехфазная
Если выше речь шла об однофазной сети, то для трехфазной сети соотношение между током и мощностью несколько отличается. Для трехфазной сети P = √3*I*U, и чтобы найти ватты в трехфазной сети, необходимо умножить вольты линейного напряжения на амперы в каждой фазе и еще на корень из 3, например: асинхронный двигатель при 380 вольтах потребляет ток 0,83 ампера на каждую фазу.
Чтобы найти полную мощность, перемножим линейное напряжение, ток, и домножим еще на √3. Имеем: P = 380*0,83*1,732 = 546 ватт. Чтобы найти амперы, достаточно мощность прибора в трехфазной сети разделить на величину линейного напряжения и на корень из 3, то есть воспользоваться формулой: I = P/(√3*U).
Заключение
Зная, что мощность в однофазной сети равна P = I*U, а напряжение в сети равно 220 вольт, ни для кого не составит труда вычислить соответствующую мощность для того или иного значения тока.
Зная обратную формулу, что ток равен I = P/U, а напряжение в сети равно 220 вольт, каждый легко найдет амперы для своего прибора, зная его номинальную мощность при работе от сети.
Аналогично ведутся вычисления и для трехфазной сети, добавляется лишь коэффициент 1,732 (корень из трех — √3). Ну и удобное правило для сетевых однофазных приборов: «в одном киловатте 4,54 ампера, а в одном ампере 220 ватт или 0,22 кВт» — это прямое следствие из приведенных формул для сетевого напряжения в 220 вольт.
Андрей Повный
Подписывайтесь на наш Телеграм-канал чтобы знать больше https://t.me/ieport_new
Читайте также: Носледние новости России и мира сегодня.
Сколько в ампере ватт, как перевести амперы в ватты и киловатты | Ортеа
Как перевести амперы в ватты
Как перевести амперы в ваттыКак перевести амперы в ватты
Онлайн калькулятор, чтобы перевести силу тока в мощность. Амперы в Ватты.
Не каждая домохозяйка сразу сообразит, как перевести амперы в ватты или в киловатты, либо наоборот — ватты и киловатты в амперы. Для чего это может потребоваться? Например, на розетке или на вилке указаны такие цифры: «220В 6А» – маркировка, отражающая предельно допустимую мощность подключаемой нагрузки. Что это значит? Какой максимальной мощности сетевой прибор можно включить в такую розетку или использовать с данной вилкой?
Чтобы получить значение мощности, достаточно перемножить две эти цифры: 220*6 = 1320 ватт — максимальная мощность для данной вилки или розетки. Скажем, утюг с паром можно будет использовать только на двойке, а масляный обогреватель — только в половину мощности.
Итак, чтобы получить ватты, нужно указанные амперы умножить на вольты: P = I*U – ток умножить на напряжение (в розетке у нас примерно 220-230 вольт). Это главная формула для нахождения мощности в однофазных электрических цепях.
Переводим ватты в амперы
Или случай, когда мощность в ваттах нужно перевести в амперы. С такой задачей сталкивается, например, человек, решивший выбрать защитный автомат для водонагревателя.
На водонагревателе написано, допустим, «2500 Вт» – это номинальная мощность при сетевых 220 вольтах. Следовательно, чтобы получить максимальные амперы водонагревателя, разделим номинальную мощность на номинальное напряжение, и получим: 2500/220 = 11,36 ампер.
Итак, можно выбрать автомат на 16 ампер. 10 амперного автомата будет явно не достаточно, а автомат на 16 ампер сработает сразу, как только ток превысит безопасное значение. Таким образом, чтобы получить амперы, нужно ватты разделить на вольты питания — мощность разделить на напряжение I = P/U (вольт в бытовой сети 220-230).Сколько ампер в киловатте и сколько киловатт в ампере
Бывает часто, что на сетевом электроприборе мощность указана в киловаттах (кВт), тогда может потребоваться перевести киловатты в амперы. Поскольку в одном киловатте 1000 ватт, то для сетевого напряжения в 220 вольт можно принять, что в одном киловатте 4,54 ампера, потому что I = P/U = 1000/220 = 4,54 ампер. Верно для сети и обратное утверждение: в одном ампере 0,22 кВт, потому что P = I*U = 1*220 = 220 Вт = 0,22 кВт.
Для приблизительных расчетов можно учитывать то, что при однофазной нагрузке номинальный ток I ≈ 4,5Р, где Р — потребляемая мощность и киловаттах. Например, при Р = 5 кВт, I = 4,5 х 5 = 22,5 А.
Как быть, если сеть трехфазная
Если выше речь шла об однофазной сети, то для трехфазной сети соотношение между током и мощностью несколько отличается. Для трехфазной сети P = √3*I*U, и чтобы найти ватты в трехфазной сети, необходимо умножить вольты линейного напряжения на амперы в каждой фазе и еще на корень из 3, например: асинхронный двигатель при 380 вольтах потребляет ток 0,83 ампера на каждую фазу.
Чтобы найти полную мощность, перемножим линейное напряжение, ток, и домножим еще на √3. Имеем: P = 380*0,83*1,732 = 546 ватт. Чтобы найти амперы, достаточно мощность прибора в трехфазной сети разделить на величину линейного напряжения и на корень из 3, то есть воспользоваться формулой: I = P/(√3*U).Заключение
Зная, что мощность в однофазной сети равна P = I*U, а напряжение в сети равно 220 вольт, ни для кого не составит труда вычислить соответствующую мощность для того или иного значения тока.
Зная обратную формулу, что ток равен I = P/U, а напряжение в сети равно 220 вольт, каждый легко найдет амперы для своего прибора, зная его номинальную мощность при работе от сети.
Аналогично ведутся вычисления и для трехфазной сети, добавляется лишь коэффициент 1,732 (корень из трех – √3). Ну и удобное правило для сетевых однофазных приборов: «в одном киловатте 4,54 ампера, а в одном ампере 220 ватт или 0,22 кВт» – это прямое следствие из приведенных формул для сетевого напряжения в 220 вольт.
Если у вас остались вопросы, можете задать их нашим инженерам.
л.с. в Амперы и Амперы в HP
Что такое мощность в лошадиных силах:
лошадиных сил – это единица измерения выходной механической мощности двигателя и двигателя. Он определяется как количество энергии, которое используется лошадью для подъема веса 745,7 Н на 1 м за 1 с.
1 л.с. = 745,7 Вт ~ 746 Вт Параметр калькуляторал.с. в амперы или амперы в л.с.:
- Выберите, что рассчитывать: л.с. в амперы или амперы в л.с.
- , если выбрано от л.с. до усилителя: номинальный ток
- Если выбрано от ампер до л.с.: с номинальной мощностью л.с.
- Опция: Для двигателей постоянного тока, 1, 2 и 3 дюйма
- Номинальное напряжение (вольт): для трехфазных напряжений, между фазами и фазами с нейтралью предусмотрена опция
- КПД: в процентах (%)
- Коэффициент мощности: в процентах или единицах (указывается для однофазной, двухфазной и трехфазной)
Преобразование л.с. в усилители:
Общий шаг преобразования HP в усилители для всех типов цепей:
Шаг 1: преобразование HP в ватты путем умножения HP на 746.
Шаг 2: разделение ватт на напряжение (В) и КПД для получения требуемых ампер (I).
Для цепей постоянного тока:
Формула для цепей постоянного тока приведена ниже.
Я =л.с. * 746 / В * (КПД (%) / 100)
Для однофазной цепи переменного тока:
Формула для однофазной цепи переменного тока такая же, как и для цепи постоянного тока с добавлением коэффициента мощности (p.f), который определяется как:
I =л.с. * 746 / В * (КПД (%) / 100) * PF
Для 2-х фазных цепей переменного тока ::
Формула для двухфазной цепи переменного тока такая же, как и для однофазной цепи переменного тока с дополнительным коэффициентом 2, который задается как:
I =л.с. * 746 / В * (КПД (%) / 100) * PF * 2
Для трехфазных цепей переменного тока:
Формула для трехфазной цепи переменного тока такая же, как и для двухфазной цепи переменного тока, но вместо 2 мы используем квадратный корень из 3 (~ 1.73), когда напряжение выражается в линейном соотношении (Vll), которое задается как:
I =л.с. * 746 / Vll * (КПД (%) / 100) * PF * 1,73
Когда напряжение выражается через линию к нейтрали, мы используем 3 вместо 1,73.
I =л.с. * 746 / Vln * (КПД (%) / 100) * PF * 3
Преобразование ампер в л.с.:
Общий шаг преобразования ампер в л. С. Для всех типов цепей:
Шаг 1: определение мощности (в ваттах) путем умножения напряжения (В), тока (I) и КПД (%).
Шаг 2: преобразование ватт в л. С. Делением ватт на 746.
Для цепей постоянного тока:
Формула для цепей постоянного тока приведена ниже.
P =I * V * (КПД (%) / 100) / 746
Для однофазной цепи переменного тока:
Формула для однофазной цепи переменного тока такая же, как и для цепи постоянного тока с добавлением коэффициента мощности (p.f), который определяется как:
P =I * V * (КПД (%) / 100) * PF / 746
Для двухфазных цепей переменного тока:
Формула для двухфазной цепи переменного тока такая же, как и для однофазной цепи переменного тока с дополнительным коэффициентом 2, который задается как:
P =I * V * (КПД (%) / 100) * PF * 2/746
Для трехфазных цепей переменного тока:
Формула для трехфазной цепи переменного тока такая же, как и для двухфазной цепи переменного тока, но вместо 2 мы используем квадратный корень из 3 (~ 1.73), когда напряжение выражается в линейном соотношении (Vll), которое задается как:
P =I * Vll * (КПД (%) / 100) * PF * 1,73 / 746
Когда напряжение выражается через линию к нейтрали, мы используем 3 вместо 1,73.
P =I * Vln * (КПД (%) / 100) * PF * 3/746
Примечание
В приведенных выше формулах:
- Поскольку эффективность выражается в процентах (%), ее необходимо разделить на 100, чтобы получить требуемый ответ. Коэффициент мощности
- (p.f) указывается в единицах измерения от 0 до 1 (например: 0,8, 0,9). Если p.f выражается в процентах, то сначала оно преобразуется в единицы путем деления коэффициента мощности в процентах на 100, а затем его значение приводится в формуле.
Решенный пример:
Для цепей постоянного тока:
Преобразование л.с. в Ампер:
Рассмотрим двигатель постоянного тока со следующими данными:
Дано:
Напряжение = 120 В
КПД = 90%
Мощность = 3 л.с.
Требуется:
Ток (I) =? (Амперы)
Решение:
Из формулы цепи постоянного тока для преобразования л.с. в амперы:
Я =3 * 746/120 * (90/100)
= 20.722 ААмпер в л.с. преобразование:
Рассмотрим двигатель со следующими данными:
Дано:
Напряжение = 120 В
КПД = 90%
Ток (I) = 15 А
Требуется:
Мощность =? (Л.с.)
Решение:
Из формулы цепи постоянного тока для преобразования ампер в л.с.:
P =15 * 120 * (90/100) / 746
= 2.17HPДля однофазных цепей:
Преобразованиел.с. в Ампер:
Рассмотрим однофазный двигатель переменного тока со следующими данными:
Дано:
Напряжение = 230 В
КПД = 90%
Мощность = 2 л.с.
Коэффициент мощности (p.f) = 0,92
Требуется:
Ток (I) =? (Амперы)
Решение:
Формула из однофазной цепи переменного тока для преобразования л.с. в амперы:
I =2 * 746/230 * (90/100) * 0.92
= 7,834 ААмпер в л.с. преобразование:
Рассмотрим однофазный двигатель со следующими данными:
Дано:
Напряжение = 230 В
КПД = 90%
Ток (I) = 20 А
Коэффициент мощности (p.f) = 0,92
Требуется:
Мощность =? (Л.с.)
Решение:
Формула из однофазной цепи переменного тока для преобразования ампер в л.с.:
P =20 * 230 * (90/100) * 0.92/746
= 5,11 л.с.Для 2-фазных цепей:
Преобразованиел.с. в Ампер:
Рассмотрим двухфазный двигатель со следующими данными:
Дано:
Напряжение = 220 В
КПД = 88%
Мощность = 2 л.с.
Коэффициент мощности (p.f) = 0,9
Требуется:
Ток (I) =? (Амперы)
Решение:
Формула из двухфазной цепи переменного тока для преобразования л.с. в амперы:
I =2 * 746/220 * (88/100) * 0.9 * 2
= 4,281 ААмпер в л.с. преобразование:
Рассмотрим двухфазный двигатель со следующими данными:
Дано:
Напряжение = 220 В
КПД = 88%
Ток (I) = 15 А
Коэффициент мощности (p.f) = 0,9
Требуется:
Мощность =? (Л.с.)
Решение:
Формула из двухфазной цепи переменного тока для преобразования ампер в л.с.:
P =2 * 220 * 15 * (88/100) * 0.9/746
= 7,01 л.с.Для трехфазных цепей:
Преобразованиел.с. в Ампер:
Рассмотрим трехфазный двигатель со следующими данными:
Дано:
Напряжение (линейное) = 480 В
КПД = 90%
Мощность = 25 л.с.
Коэффициент мощности (p.f) = 0,9
Требуется:
Ток (I) =? (Амперы)
Решение:
Формула из трехфазной цепи переменного тока для преобразования л.с. в амперы:
I =25 * 746/1.73 * 480 * (90/100) * 0,9
= 27,728 АЕсли мы изменим напряжение с линии на линию на линию на нейтраль, например: V (фаза на нейтраль) = 277,13 В
Затем мы будем рассчитывать его по формуле трехфазной цепи переменного тока, когда напряжение задается как линия к нейтрали, то есть:
I =25 * 746/3 * 277,13 * (90/100) * 0,9
= 27,694 ААмпер в л.с. преобразование:
Рассмотрим трехфазный двигатель со следующими данными:
Дано:
Напряжение = 480 В
КПД = 90%
Ток (I) = 25 А
Коэффициент мощности (стр.е) = 0,9
Требуется:
Мощность =? (Л.с.)
Решение:
Формула из трехфазной цепи переменного тока для преобразования ампер в л.с.:
P =1,73 * 480 * 25 * (90/100) * 0,9 / 746
= 22,54 л.с.Если мы изменим напряжение с линии на линию, чтобы линия на нейтраль, например: V (фаза на нейтраль) = 277,13 В (480 / 1,73)
Затем мы будем рассчитывать его по формуле трехфазной цепи переменного тока, когда напряжение задается как линия к нейтрали, то есть:
P =3 * 277 * 25 * (90/100) * 0.9/746
= 22,56 л.с.Как рассчитать ампер для электродвигателя?
Обычно для размера электродвигателя он оценивается в лошадиных силах (л.с.) или киловаттах (кВт). Мы можем распознать размер электродвигателя по киловаттам или лошадиным силам. Итак, исходя из мощности (кВт / л.с.), как мы можем узнать мощность ампер полной нагрузки для электродвигателя?
На этот раз я хочу рассказать о том, как рассчитать ампер при полной нагрузке (FLA) электродвигателя исходя из их номинальной мощности. Это несложно, если мы знаем правильную формулу, чтобы получить ответ.Из этого расчета мы можем оценить только значение тока полной нагрузки.
Мы не можем получить фактический ток при полной нагрузке, потому что он зависит от КПД двигателя. Если электродвигатели имеют более высокий КПД, они потребляют меньше ампер, например, двигатель мощностью 10 л.с. с КПД 60% будет потреблять около 65 А. 230 В переменного тока по сравнению с примерно 45 А для двигателя с номиналом 80%.
Как рассчитать мощность (кВт и л.с.) в амперах (I)? 1) киловатт (кВт) в ампер (л)Для 3-х фазного питания; кВт = I x V x 1.732 х пф
Для однофазного питания; кВт = I x V x pf
Пример: 1 компрессор мощностью 37 кВт, 415 В переменного тока, 3 фазы и 80% мощности, рассчитать ампер при полной нагрузке?
Расчет:
кВт = I x V x 1,732 x pf
I = кВт / (В x 1,732 x пФ)
I = 37 / (415 х 1,732 х 0,8)
I = (37/575) x 1000
I = 64,4 ампера (ампер полной нагрузки)
2) Мощность в лошадиных силах (л.с.) в амперах (I)Сначала мы должны преобразовать из л.с. в кВт, используя эту формулу:
1 л.с. = 0.746 кВт
После этого используйте формулу из кВт в ампер:
Для 3-х фазного питания; кВт = I x V x 1,732 x pf
Для однофазного питания; кВт = I x V x pf
Пример: –
1 асинхронный двигатель мощностью 25 л.с., 200 В перем. Тока, 3 фазы, коэффициент мощности 90%, рассчитанный ток полной нагрузки.
Расчет: –
кВт = 25 л.с. x 0,746
кВт = 18,65
кВт = I x V x 1.732 x pf
I = кВт / В x 1,732 x пФ
I = 18,65 / (200 х 1,732 х 0,9)
I = (18,65 / 311,76) x 1000
I = 59,8 ампер (ампер полной нагрузки)
PEV Зарядка: амперы, вольт и ватты
Понять, что такое зарядка PEV не так уж и сложно, но для этого нужен язык – электрический, – который является чуждым большинству людей. Если вы относитесь к типу людей, которых просто не устраивает обзор, вот вам более подробное описание темы.
[Расчетное время чтения: 4 минуты 20 секунд.]
Эта статья может помочь вам разобраться в разговоре энтузиастов электромобилей (PEV) о своих трюках с топливной экономичностью и зарядкой. Более того, это поможет вам научиться точно рассчитывать домашнее потребление электроэнергии и скорость зарядки, если вы решите купить тот PEV, о котором вы думали.
Важными элементами домашней системы являются зарядный блок PEV, официально называемый EVSE; его сила тока и емкость бортового зарядного устройства подключаемого к сети автомобиля, обычно выражаемая в киловаттах или кВт.
Что такое ватт?
Первые аккумуляторные электромобили еще в темные времена 2010 и 2011 годов были оснащены зарядными устройствами мощностью 3,3 кВт. Это означает, что они могли принимать не более 3,3 киловатт электроэнергии в час, когда были подключены к источнику питания на 240 вольт, или к источнику питания уровня 2.
Ватт – это основная единица электроэнергии, а киловатт – это 1000 ватт. Зарядная станция PEV, которая может послать только 1 киловатт электроэнергии в аккумуляторную батарею в час, будет устройством на 1 киловатт (кВт).Это было бы не очень эффективно.
Зарядные устройства на 3,3 кВт в первых электромобилях не были такими быстрыми, поэтому производители вскоре начали использовать зарядные устройства на 6,6 кВт, а с конца 2010-х годов многие новые электромобили имели зарядную мощность 7,6 кВт. Некоторые топовые модели идут еще выше. Базовая емкость зарядки Tesla, например, составляет 10 кВтч, и покупатели могут заказать второе бортовое зарядное устройство, которое удваивает скорость зарядки до 20 кВтч.
В то время как аккумуляторно-электрические транспортные средства (BEV) активизировали свою игру с зарядкой, большинство гибридов с подключаемым модулем все еще используют 3.Зарядные устройства на 3 кВт, потому что они имеют гораздо меньшие батареи, часто менее трети размера BEV. Им не нужны более быстрые зарядные устройства, и покупателям не нужны дополнительные расходы, которые они добавят к автомобилю.
Но для BEV более высокая скорость зарядки означает меньше времени на подключение к розетке и больше времени в дороге.
Усиление
В то время как зарядное устройство в автомобиле оценивается по скорости, с которой оно может проталкивать электричество от сопла разъема домашнего устройства к аккумуляторной батарее, сам EVSE рассчитан на максимальный ток, который он может передать.Этот объем измеряется в амперах или амперах.
Думайте о EVSE и его зарядном шнуре как о шланге, а о зарядном устройстве в автомобиле – как о отверстии в горлышке бутылки. В то время как более широкое горлышко бутылки может вместить больше воды, оно ограничено объемом воды, подаваемой через шланг. А шланг ограничен напором воды. При зарядке автомобиля от электросети «давление», проталкивающее электрический ток через «шланг» EVSE, измеряется в вольтах.
В США нормальный домашний ток составляет 120 вольт и может немного отличаться в зависимости от всех видов факторов.Домашний EVSE, использующий источник питания 110 В, называется устройством уровня 1.
Базовый уровень 2 EVSE начинается с 16 ампер, хотя большинство профессиональных установщиков порекомендуют более мощную систему на 30 или 40 ампер. Некоторые, например, для Tesla с двумя зарядными устройствами, достигают 80 ампер.
Строительные нормы и правила требуют, чтобы электрическая цепь, по которой подается электричество, была рассчитана на более высокий уровень, чем EVSE, чтобы учесть потери, возникающие при протекании энергии через нее в транспортное средство.
Профессионал, устанавливающий вашу 30-амперную систему, обычно подключает электрическую цепь от бытовой электросети к току 40 А и устанавливает автоматический выключатель на 40 А.Для EVSE на 40 ампер потребуется прерыватель на 50 ампер, а для устройства на 80 ампер потребуется прерыватель на 100 ампер. В некоторых домах с очень небольшой или интенсивно используемой электрической мощностью, возможно, потребуется модернизировать услугу, чтобы справиться с EVSE.
Сколько достаточно?
Чтобы вычислить, сколько энергии будет доставлено в ваш автомобиль с подключаемым модулем через любой правильно установленный модуль EVSE, умножьте токи на вольты и разделите на 1000.
240-вольтный EVSE уровня 2 и номинальный ток 30 ампер обеспечит 7.2 киловатта (240 х 30/1000). За один час на подключаемый к электросети автомобиль будет отправлено 7,2 кВт-ч электроэнергии, поэтому можно будет обслуживать автомобили с бортовыми зарядными устройствами мощностью 7,2 кВт или меньше.
УстройстваEVSE будут работать с зарядными устройствами, емкость которых меньше, чем рассчитана на EVSE – часть работы EVSE состоит в том, чтобы определить, какой ток фактически пропускать. Но если емкость вашего EVSE меньше емкости автомобильного зарядного устройства, автомобиль не будет заряжаться так быстро, как того требует производитель.
Мораль? Купите EVSE максимальной емкости, которую вы можете себе позволить.Это позволит вам сохранить ту же домашнюю зарядную станцию, если (или когда) вы позже перейдете на новый PEV с бортовым зарядным устройством большей емкости, чем модель, которую оно заменяет. (Модель на 80 ампер вам не понадобится, если в ближайшее время вы не приобретете двойное зарядное устройство Tesla.)
… ..
Основы домашней зарядки описаны в разделе «Зарядка от электросети – что вам нужно знать».
Что такое кВА и как ее рассчитать
кВА Номинальная мощность
Номинальные значения мощности выражаются в различных формах, таких как ВАТТЫ и КИЛОВАТТЫ, АМПЕРЫ или АМПЕРЫ, ВОЛЬТЫ, а также в кВА, но что именно такое кВА…
За пределами индустрии дизельных генераторов термин киловольт-ампер (кВА) мало известен. Киловатт (кВт) – это гораздо более распространенный термин, и это то, как оцениваются электрические элементы в вашем доме, вы можете даже заметить, что он количественно указан в вашем счете за электроэнергию, поэтому он гораздо более точен, но что такое кВА?
Фактическая мощность
Следовательно, мы можем называть кВт фактической мощностью, это количество энергии, которое преобразуется в выходную мощность.
Полная мощность
С другой стороны, кВА – это мера полной мощности: она описывает общую мощность, используемую системой, например, в системе с КПД 100% кВт будет в точности равняться кВА.Однако в действительности электрические системы не являются 100% эффективными, и поэтому не вся полная мощность систем используется для полезной работы. По сути, один кВА равен 1000 вольт-ампер. В то время как вольт предназначен для измерения электрического давления, ампер – это способ измерения электрического тока. Термин, называемый кажущейся мощностью (абсолютное значение комплексной мощности, S), равен произведению вольт и ампер.
Коэффициент мощности
Дизель-генераторыимеют коэффициент мощности 0.8. Зная это, легко преобразовать кВА в кВт, потому что вы знаете уровень эффективности рассматриваемой электрической системы. Электрический КПД обычно выражается как коэффициент мощности между 0 и 1, поэтому, чем ближе коэффициент мощности к 1, тем эффективнее преобразование кВА в фактические киловатты.
Формула от кВт к кВА:
- Полная мощность (кВА) x коэффициент мощности (pf) = фактическая мощность (кВт)
- например 100 кВА x 0.8 = 80 кВт
- Формула для преобразования кВт в кВА:
- Фактическая мощность (кВт) / коэффициент мощности (pf) = полная мощность (кВА)
- 1 тонна = 200 БТЕ / мин
- 1 тонна = 12000 БТЕ / час
- 1 тонна = 3,517 киловатт
Дизель-генераторы Что такое коэффициент мощности? Связаться с нами
Блог, опубликованный Advanced Diesel Engineering 15 июня 2017 г.
Прерыватель какого размера требуется для 2.2квт 220в vfd?
Точечное разрешение blackTooth представляет собой комбинацию двух характеристик устройства:
– Шаги / дюйм (или шаги / мм), которые являются разрешением, но не размером точки
– Размер фактической точки, не связанный конкретно с разрешением.
Шаги на или разрешение могут фактически быть диапазоном, поскольку микрошаговый драйвер может быть изменен.
Для определения разрешения можно использовать простую формулу:
шага на дюйм = (шаги двигателя * микрошаг) / (ход на один оборот двигателя в дюймах)
, если микрошаг установлен на 16 (1/16 на приводе) и вы используете шкив с шагом.08 дюймов и 20 зубьев на ведущей звездочке
= (200 шагов * 16 микрошагов) / (20 зубцов * 0,08 дюйма)
= 3200 шагов / 1,6 дюйма
= 2000 шагов на дюйм
Для увеличения разрешения достаточно увеличить микрошаги на драйвере.
Фактический размер точки будет зависеть от линзы, которую вы используете, материала, на который производится лазерная обработка, периода времени, в течение которого энергия лазера применяется к материалу, и фокусной высоты линзы на материале рабочей поверхности.Энергия от лазера сходится к точке и создает точку на поверхности (которая отличается от пропила лазера в материале).
Точка будет иметь разные размеры в зависимости от материала, потому что, скажем, дерево будет гореть, вызывая горение точки, которая обжигает волокна дерева и немного расширяется. Точка, нанесенная на поверхность пластика, например оргстекла, будет меньше, потому что энергия поглощается только в этой точке, но поскольку оргстекло является термопластом, небольшая часть энергии расплавит края точки в зависимости от временного интервала. (период), что энергия приложена к поверхности.
Фокус лазерной энергии от линзы выглядит как конус, сходящийся к точке, а затем расходящийся наружу после этой точки. В зависимости от расстояния от линзы до поверхности материала точка будет больше или меньше. Вы хотите найти фокус (где энергия сосредоточена в точку). Вы можете использовать технику, при которой вы кладете материал на склон и обрабатываете его лазером вдоль склона, чтобы найти наилучшую точку (точку), которая будет вашей самой маленькой точкой или местом разреза.Помните, что прорезь будет расширяться или сужаться в пределах толщины материала в зависимости от спецификации объектива с фокусным расстоянием (конус будет короче или длиннее в зависимости от фокусного расстояния объектива).
Щелкните ссылку, чтобы ответить:
Какое разрешение (размер) точек у лазера BlackTooth?
Глоссарий по солнечной энергии | Министерство энергетики
S
жертвенный анод – кусок металла, закопанный рядом с конструкцией, которая должна быть защищена от коррозии.Металл расходуемого анода предназначен для коррозии и уменьшения коррозии защищаемой конструкции.
Спутниковая энергосистема (SPS) – Концепция обеспечения большого количества электроэнергии для использования на Земле от одного или нескольких спутников на геостационарной околоземной орбите. Очень большой массив солнечных элементов на каждом спутнике будет обеспечивать электричество, которое будет преобразовано в микроволновую энергию и направлено на приемную антенну на земле. Там она будет преобразована в электроэнергию и распределена так же, как и любая другая энергия, вырабатываемая централизованно, через сеть.
планирование – Общая практика обеспечения того, чтобы генератор был зафиксирован и доступен, когда это необходимо. Это также может относиться к составлению графиков импорта или экспорта энергии в зону балансирования или из нее.
Барьер Шоттки – Барьер ячейки, установленный как граница раздела между полупроводником, например кремнием, и листом металла.
разметка – Нарезка сеточного рисунка канавок в полупроводниковом материале, как правило, с целью создания межсоединений.
герметичная батарея – батарея с невыполненным электролитом и закрывающейся вентиляционной крышкой, также называемая аккумуляторной батареей с регулируемым клапаном. Электролит добавлять нельзя.
сезонная глубина разряда – поправочный коэффициент, используемый в некоторых процедурах определения размеров системы, который «позволяет» батарее постепенно разряжаться в течение 30-90-дневного периода плохой солнечной инсоляции. Этот фактор приводит к немного меньшей фотоэлектрической матрице.
аккумулятор – аккумулятор, который можно перезаряжать.
саморазряд – Скорость, с которой батарея без нагрузки теряет заряд.
полупроводник – Любой материал, который имеет ограниченную способность проводить электрический ток. Некоторые полупроводники, включая кремний, арсенид галлия, диселенид меди, индия и теллурид кадмия, уникально подходят для процесса фотоэлектрического преобразования.
полукристаллический – См. мультикристаллический.
Соединение серии – Способ соединения фотоэлементов путем соединения положительных выводов с отрицательными выводами; такая конфигурация увеличивает напряжение.
Контроллер серии – Контроллер заряда, который прерывает зарядный ток путем размыкания цепи фотоэлектрической (PV) матрицы. Элемент управления включен последовательно с фотоэлектрической панелью и батареей.
Регулятор серии – Тип регулятора заряда аккумулятора, в котором ток зарядки регулируется переключателем, подключенным последовательно с фотоэлектрическим модулем или массивом.
последовательное сопротивление – Паразитное сопротивление току в элементе из-за таких механизмов, как сопротивление основной части полупроводникового материала, металлических контактов и межсоединений.
Аккумулятор мелкого цикла – Аккумулятор с небольшими пластинами, который не выдерживает большого количества разрядов до низкого уровня заряда.
Срок годности аккумуляторов – Продолжительность времени, в течение которого при определенных условиях аккумулятор может храниться таким образом, чтобы он сохранял свою гарантированную емкость.
ток короткого замыкания (Isc) – ток, свободно протекающий через внешнюю цепь без нагрузки или сопротивления; максимально возможный ток.
Контроллер шунта – Контроллер заряда, который перенаправляет или шунтирует зарядный ток от батареи.Контроллеру требуется большой радиатор для отвода тока от короткозамкнутой фотоэлектрической батареи. Большинство контроллеров шунта предназначены для небольших систем мощностью 30 ампер или меньше.
Шунтирующий регулятор – Тип регулятора заряда аккумуляторной батареи, в котором зарядный ток регулируется переключателем, включенным параллельно с фотоэлектрическим (PV) генератором. Замыкание фотоэлектрического генератора предотвращает перезарядку аккумулятора.
Siemens process – коммерческий метод получения очищенного кремния.
кремний (Si) – полуметаллический химический элемент, который является отличным полупроводниковым материалом для фотоэлектрических устройств. Он кристаллизуется в гранецентрированной кубической решетке, как алмаз. Обычно он содержится в песке и кварце (в виде оксида).
синусоида – форма волны, соответствующая одночастотному периодическому колебанию, которое может быть математически представлено как функция амплитуды в зависимости от угла, при котором значение кривой в любой точке равно синусу этого угла.
синусоидальный инвертор – инвертор, вырабатывающий синусоидальные формы мощности коммунального качества.
Монокристаллический материал – Материал, состоящий из монокристалла или нескольких крупных кристаллов.
Кремний монокристаллический – Материал с монокристаллическим образованием. Многие фотоэлементы изготовлены из монокристаллического кремния.
Одноступенчатый контроллер – Контроллер заряда, который перенаправляет весь зарядный ток, когда аккумулятор приближается к полному состоянию заряда.
smart grid – интеллектуальная электроэнергетическая система, которая регулирует двусторонний поток электроэнергии и информации между электростанциями и потребителями для управления работой сети.
мягкие затраты – Неаппаратурные затраты, связанные с фотоэлектрическими системами, такие как финансирование, получение разрешений, установка, подключение и проверка.
солнечный элемент – См. Фотоэлектрический элемент .
солнечная постоянная – Среднее количество солнечного излучения, которое достигает верхних слоев атмосферы Земли на поверхности, перпендикулярной солнечным лучам; равно 1353 Вт на квадратный метр или 492 британских тепловых единицы на квадратный фут.
солнечное охлаждение – Использование солнечной тепловой энергии или солнечного электричества для питания охлаждающего устройства. Фотоэлектрические системы могут питать испарительные охладители («болотные» охладители), тепловые насосы и кондиционеры.
солнечная энергия – Электромагнитная энергия, передаваемая солнцем (солнечное излучение). Сумма, которая достигает Земли, равна одной миллиардной общей произведенной солнечной энергии, или примерно 420 триллионов киловатт-часов.
Кремний солнечного качества – Кремний промежуточного качества, используемый в производстве солнечных элементов.Дешевле, чем кремний электронного качества.
солнечная инсоляция – См. Инсоляция .
солнечное излучение – См. освещенность.
солнечный полдень – Время суток в определенном месте, когда солнце достигает своей самой высокой видимой точки на небе.
солнечная панель – См. Фотоэлектрическая (PV) панель .
солнечный ресурс – Количество солнечной инсоляции, получаемой площадкой, обычно измеряется в кВтч / м2 / день, что эквивалентно количеству солнечных часов в пик.
солнечный спектр – Общее распределение электромагнитного излучения, исходящего от Солнца. Различные области солнечного спектра описываются диапазоном длин волн. Видимая область простирается от 390 до 780 нанометров (нанометр составляет одну миллиардную часть одного метра). Около 99 процентов солнечного излучения содержится в диапазоне длин волн от 300 нм (ультрафиолет) до 3000 нм (ближний инфракрасный). Комбинированное излучение в диапазоне длин волн от 280 до 4000 нм называется широкополосным или полным солнечным излучением.
солнечные тепловые электрические системы – Технологии преобразования солнечной энергии, которые преобразуют солнечную энергию в электричество путем нагрева рабочей жидкости для питания турбины, приводящей в действие генератор. Примеры этих систем включают системы центрального приемника, параболическую тарелку и солнечный желоб.
пространственный заряд – См. Барьер ячейки .
удельный вес – Отношение веса раствора к весу равного объема воды при заданной температуре.Используется как индикатор уровня заряда аккумулятора.
вращающийся резерв – Электростанция или энергосистема подключены и работают на малой мощности, превышающей фактическую нагрузку.
Ячейка с разделенным спектром – Составное фотоэлектрическое устройство, в котором солнечный свет сначала разделяется на спектральные области с помощью оптических средств. Затем каждая область направляется в другой фотоэлектрический элемент, оптимизированный для преобразования этой части спектра в электричество. Такое устройство обеспечивает значительно большее общее преобразование падающего солнечного света в электричество. См. Также многопереходное устройство .
распыление – Процесс, используемый для нанесения фотоэлектрического полупроводникового материала на подложку с помощью процесса физического осаждения из паровой фазы, при котором высокоэнергетические ионы используются для бомбардировки элементарных источников полупроводникового материала, которые выбрасывают пары атомов, которые затем осаждаются тонкими слоями на субстрат.
прямоугольная волна – форма волны, имеющая только два состояния (т. Е. Положительное или отрицательное). Прямоугольная волна содержит большое количество гармоник.
Преобразователь прямоугольной формы – Тип инвертора, который выдает выходной сигнал прямоугольной формы. Он состоит из источника постоянного тока, четырех переключателей и нагрузки. Переключатели представляют собой силовые полупроводники, которые могут пропускать большой ток и выдерживать высокое номинальное напряжение. Переключатели включаются и выключаются в правильной последовательности, с определенной частотой.
Эффект Стэблера-Вронски – Тенденция эффективности преобразования солнечного света в электричество фотоэлектрических устройств на основе аморфного кремния ухудшаться (падать) при первоначальном воздействии света.
Автономная система – Автономная или гибридная фотоэлектрическая система, не подключенная к сети. Может иметь или не иметь хранилища, но для большинства автономных систем требуются батареи или какой-либо другой вид хранилища.
стандартные условия отчетности (SRC) – Фиксированный набор условий (включая метеорологические), в которые преобразуются электрические характеристики фотоэлектрического модуля из набора фактических условий испытаний.
Стандартные условия испытаний (STC) – Условия, при которых модуль обычно испытывается в лаборатории.
ток в режиме ожидания – Это величина тока (мощности), используемая инвертором при отсутствии активной нагрузки (потеря мощности). КПД инвертора самый низкий при низкой нагрузке.
Монтаж на стойке – Методика монтажа фотоэлектрической батареи на наклонной крыше, которая включает установку модулей на небольшом расстоянии над скатной крышей и их наклон под оптимальным углом.
Ячейка с недостатком электролита – Батарея, содержащая мало свободного жидкого электролита или не содержащая его.
Состояние заряда (SOC) – Доступная оставшаяся емкость аккумулятора, выраженная в процентах от номинальной емкости.
аккумуляторная батарея – Устройство, способное преобразовывать энергию из электрической в химическую форму и наоборот. Реакции почти полностью обратимы. Во время разряда химическая энергия преобразуется в электрическую и потребляется во внешней цепи или аппарате.
расслоение – Состояние, которое возникает, когда концентрация кислоты в электролите батареи изменяется сверху вниз.Периодическая контролируемая зарядка при напряжениях, вызывающих выделение газов, приведет к перемешиванию электролита. См. Также выравнивание .
строка – ряд фотоэлектрических модулей или панелей, соединенных между собой последовательно для создания рабочего напряжения, необходимого для нагрузки.
Субчасовые рынки энергии – Рынки электроэнергии, работающие с шагом 5 минут. Приблизительно 60% всей электроэнергии в Соединенных Штатах в настоящее время продается на субчасовых рынках, работающих с 5-минутными интервалами, так что максимальная гибкость может быть получена от парка генераторов.
подложка – Физический материал, на который наносится фотоэлектрический элемент.
подсистема – Любой из нескольких компонентов фотоэлектрической системы (например, массив, контроллер, батареи, инвертор, нагрузка).
сульфатирование – Состояние, поражающее неиспользуемые и разряженные батареи; Вместо обычных крошечных кристаллов на пластине растут крупные кристаллы сульфата свинца, что затрудняет подзарядку аккумулятора.
сверхпроводящий магнитный накопитель энергии (SMES) – технология SMES использует сверхпроводящие характеристики низкотемпературных материалов для создания интенсивных магнитных полей для хранения энергии.Он был предложен в качестве варианта хранения для поддержки широкомасштабного использования фотоэлектрической энергии в качестве средства сглаживания колебаний в выработке электроэнергии.
сверхпроводимость – Резкое и сильное увеличение электропроводности некоторых металлов при приближении температуры к абсолютному нулю.
superstrate – Покрытие на солнечной стороне фотоэлектрического модуля, обеспечивающее защиту фотоэлектрических материалов от ударов и ухудшения окружающей среды, обеспечивая при этом максимальное пропускание соответствующих длин волн солнечного спектра.
Пиковая мощность – Максимальная мощность, обычно в 3-5 раз превышающая номинальную мощность, которую можно обеспечить за короткое время.
доступность системы – процент времени (обычно выражается в часах в год), когда фотоэлектрическая система сможет полностью удовлетворить потребность в нагрузке.
Рабочее напряжение системы – Выходное напряжение фотоэлектрической матрицы под нагрузкой. Рабочее напряжение системы зависит от нагрузки или батарей, подключенных к выходным клеммам.
системный накопитель – См. Емкость аккумулятора .
В начало
Трехфазный ток – простой расчет
Расчет тока в трехфазной системе был поднят на нашем сайте отзывов, и это обсуждение, в которое я, кажется, время от времени участвую. Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему шаг за шагом, используя базовые принципы. Я подумал, что неплохо было бы написать, как я делаю эти расчеты.Надеюсь, это может оказаться полезным для кого-то еще.
Трехфазное питание и токМощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока является полной мощностью и измеряется в ВА (или кВА). Соотношение между кВА и кВт – это коэффициент мощности (pf):
что также может быть выражено как:
Однофазная система – с этим проще всего иметь дело.Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока – это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0,86:
.
Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.
Трехфазная система – Основное различие между трехфазной системой и однофазной системой – это напряжение.В трехфазной системе линейное напряжение (V LL ) и фазное напряжение (V LN ) связаны следующим образом:
.
или как вариант:
чтобы лучше понять это или получить больше информации, вы можете прочитать статью «Введение в трехфазную электрическую мощность»
Для меня самый простой способ решить трехфазные проблемы – это преобразовать их в однофазную. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт.Мощность в кВт на обмотку (однофазная) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.
В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (В LL ):
линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу
Достаточно просто.Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность.
Использование формулЛичная записка по методу
Как правило, я запоминаю метод (а не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет – всегда старайтесь запоминать метод, а не просто запоминать формулы.Конечно, если у вас есть суперспособность запоминать формулы, вы всегда можете придерживаться этого подхода.
Вывод формулы – пример
Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL
Преобразование в однофазную проблему:
P1ph = P3
Полная мощность одной фазы S 1 фаза (ВА):
S1ph = P1phpf = P3 × pf
Фазный ток I (A) – полная однофазная мощность, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL
Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL
Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.
Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из вышеприведенного, например:
I = W3 × pf × VLL, дюйм A
Несимметричные трехфазные системыВышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.
Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, так как каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.
Сбалансированные напряжения
К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током.Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.
Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A
линия на нейтраль (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА
Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.
Несбалансированные напряжения
Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети.Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.
КПД и реактивная мощностьСетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети – Введение и обзор
Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования – это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других примечаниях (просто воспользуйтесь поиском на сайте).
СводкаПомня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА – это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток.При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех.