Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Что будет если установить конденсатор меньшей емкости. Как заменить конденсатор в электронной аппаратуре. Полярность подключения электролитических конденсаторов

Автор : elremont от 26-01-2014

Это был один из тех дней, когда кошка пожевала ваш модуль? Или, может быть у вас есть старый усилитель, где из конденсаторов потекла эта противная ядовитая слизь? Если вы когда-либо были в этой ситуации, то вы могли бы отремонтировать модуль, заменив конденсаторы. Давайте рассмотрим пример, где я заменю этот конденсатор на печатной плате. Сначала немного теории. Что такое конденсатор? Конденсатор это устройство для хранения энергии, которое может быть использовано для сглаживания напряжения. Каждый конденсатор имеет два важных параметра: емкость и напряжение. Емкость говорит нам о том, сколько энергии может накопить конденсатор при заданном напряжении. Емкость обычно измеряется в микрофарадах (uF). В девяносто девяти процентах случаев, при замене конденсатора, надо использовать такое же значение емкости или очень близкое.

Здесь применен конденсатор 470uF. Если я хочу заменить его, то в идеале я должен взять другой конденсатор на 470uF. Другой важный параметр это номинальное напряжение. Номинальное напряжение это максимальное напряжение, при котором конденсатор может работать не взрываясь. Еще раз отметим, что напряжение написанное на конденсаторе означает, что это максимальное напряжение, которое может подаваться на конденсатор. Это не значит, что на конденсаторе, обязательно будет это напряжение. Например, это конденсатор на 16 вольт. Это не означает, что он заряжен на 16 вольт, как батарейка. Это означает, что если его заряжать до 5 вольт, то он будет прекрасно работать. Если я заряжу его до 10 вольт, все будет хорошо. Если заряжу его до 16 вольт, то он справиться и с этим. Но если я заряжу его до 25 вольт, он взорвется. Возвращаясь к нашему примеру конденсатора я вижу, что он рассчитан на 16 вольт. При замене я должен использовать конденсатор на 16V или выше. Теперь выясняется, что все конденсаторы на 470 uF, которые у меня есть рассчитаны 25 вольт.
Но это не проблема. Если в оригинальной схеме требуется конденсатор на 16V, то я могу использовать конденсатор на 25V, это просто означает, что у меня будет больший запас прочности. Теперь давайте поговорим о полярности. На минусовой стороне электролитического конденсатора всегда будет нанесен маленький символ минуса. Все, что вам нужно сделать, это убедиться, что полярность совпадает с прежним конденсатором. Если перепутать полярность, то вот что происходит. Так что теперь, зная полярность, я заменю конденсатор и припаяю его на место. Напоследок, небольшое предупреждение по безопасности. Если вы когда-нибудь видели эти большин конденсаторы на напряжения более 200 вольт, то вы должны быть осторожны с ними, чтобы не задеть их, если они заряжены. Помните, что конденсатор, заряженный на 200V, может убить вас.
Удачной замены конденсаторов!
_

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки – между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора -характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов . Общая ёмкость будет равна сумме двух конденсаторов:

С общ =С 1 +С 2 +…С п

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65 .

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа

CBB60 , CBB61 .

Клеммы для удобства соединения сдвоенные или счетверённые.

Приняв решение о замене конденсатора на печатной плате, первым делом следует подобрать конденсатор на замену. Как правило, речь идет об электролитическом конденсаторе, который по причине исчерпания своего рабочего ресурса начал создавать нештатный режим вашему электронному устройству, либо конденсатор лопнул из-за перегрева, а может быть вы просто решили поставить поновее или получше.

Выбираем подходящий конденсатор на замену

Параметры конденсатора на замену непременно должны подходить: его номинальное напряжение ни в коем случае не должно быть ниже, чем у заменяемого конденсатора, а емкость — никак не ниже, или может быть процентов на 5-10 выше (если это допустимо в соответствии с известной вам схемой данного устройства), чем была изначально.

Наконец, убедитесь, что новый конденсатор подойдет по размеру на то место, которое покинет его предшественник. Если он окажется чуть-чуть поменьше диаметром и высотой — не страшно, но если диаметр или высота больше — могут помешать компоненты, расположенные на этой же плате поблизости или он будет упираться в элементы корпуса. Эти нюансы важно учесть. Итак, конденсатор на замену выбран, он вам подходит, теперь можно приступать к демонтажу старого конденсатора.

Готовимся к процессу

Сейчас необходимо будет устранить с платы неисправный конденсатор, и подготовить место для установки сюда же нового. Для этого вам потребуется, конечно, а также удобно к данному действу подготовить кусок медной оплетки для снятия припоя. Как правило, мощности паяльника в пределах 40 Вт будет вполне достаточно даже если на плате был изначально применен тугоплавкий припой.

Что же касается медной оплетки для устранения припоя, то если у вас такой нет, ее весьма несложно изготовить самостоятельно: возьмите кусок не очень толстого медного провода, состоящего из тонких медных жилок, снимите с него изоляцию, слегка (можно простой сосновой канифолью), – теперь эти пропитанные флюсом жилки легко, словно губка, вберут в себя припой с ножек выпаиваемого конденсатора.

Выпаиваем старый конденсатор

Сначала посмотрите, какова полярность выпаиваемого конденсатора на плате: в какую сторону минусом он стоит, чтобы когда будете впаивать новый — не допустить ошибки с полярностью. Обычно минусовая ножка отмечена полосой. Итак, когда оплетка для удаления припоя приготовлена, а паяльник уже достаточно разогрет, сначала прислоните оплетку к основанию той из ножек конденсатора, которую вы решили освободить от припоя первой.

Аккуратно расплавьте припой на ножке прямо через оплетку, чтобы оплетка тоже разогрелась и быстро втянула в себя припой с платы. Если припоя на ножке многовато, двигайте оплетку по мере того как она будет заполняться припоем, собирая на нее весь припой с ножки, чтобы ножка в итоге осталась свободной от припоя. Проделайте это же самое со второй ножкой конденсатора. Теперь конденсатор можно легко выдернуть рукой или пинцетом.

Впаиваем новый конденсатор

Новый конденсатор необходимо установить с соблюдением полярности, то есть минусовой ножкой туда же, где была минусовая ножка выпаянного. Обычно минус обозначен полоской, а плюсовая ножка длиннее минусовой. Обработайте ножки конденсатора флюсом.

Вставьте конденсатор в отверстия. Не нужно заранее укорачивать ножки. Разогните ножки немного в разные стороны, чтобы конденсатор хорошо держался на месте и не выпадал.

Теперь, прогревая ножку возле самой платы кончиком жала паяльника, поднесите тычком припой к ножке, чтобы ножка окуталась, смочилась, окружилась припоем. То же самое проделайте со второй ножкой. Когда припой остынет, вам останется укоротить ножки конденсатора кусачками (до той длины, что и у соседних деталей на вашей плате).

Самая распространённая поломка современной электроники – это неисправность электролитических конденсаторов. Если вы после разбора корпуса электронного устройства замечали, что на печатной плате имеются конденсаторы с деформированным, вздутым корпусом, из которого сочится ядовитый электролит, то самое время разобраться, как распознать поломку или дефект в конденсаторе и подобрать адекватную замену. Располагая профессиональным флюсом для пайки, припоем, паяльной станцией, набором новых конденсаторов, вы без особого труда «оживите» любой электронный прибор своими руками.

По сути, конденсатор – радиоэлектронный компонент, основная цель которого – это накопление и отдача электроэнергии с целью фильтрации, сглаживания и генерации переменных электрических колебаний. Любой конденсатор имеет два важнейших электрических параметра: ёмкость и максимальное постоянное напряжение, которое может быть приложено к конденсатору без его пробоя или разрушения. Ёмкость, как правило, определяет, какое количество электрической энергии может вобрать в себя конденсатор, если приложить к его обкладкам постоянное напряжение, не превышающее заданного лимита. Ёмкость измеряется в Фарадах. Наибольшее распространение получили конденсаторы, ёмкость которых исчисляется в микрофарадах (мкФ), пикофарадах (пкФ) и нанофарадах (нФ). Во многих случаях рекомендуется заменять неисправный конденсатор на исправный, имеющий аналогичные ёмкостные характеристики. Однако в ремонтной практике бытует мнение о том, что в схемах блоков питания можно ставить конденсатор, несколько превышающий по ёмкости фабричные параметры. К примеру, если мы хотим заменить разорвавшийся электролит на 100мкФ 12Вольт в блоке питания, который призван сгладить колебания после диодного выпрямительного моста, можно смело устанавливать ёмкость даже на 470мкФ 25В. Во-первых, повышенная ёмкость конденсатора только уменьшит пульсации, что само по себе неплохо для блока питания. Во-вторых, повышенное предельное напряжение только повысит общую надёжность схемы. Главное, чтобы отведённое под установку конденсатора место подходило.

Почему взрываются конденсаторы электролитического типа

Самая частая причина, по которой происходит взрыв электролитического конденсатора – это превышение напряжения межу обкладками конденсатора. Не секрет, что во многих приборах китайского производства параметр максимального напряжения точно соответствует приложенному напряжению. По своей задумке производители конденсаторов не предусматривали, что в штатном включении конденсатора в состав электросхемы на его контакты будет подаваться именно максимальное напряжение. К примеру, если на конденсаторе написано 16В 100мкФ, то не стоит его подключать в схему, где на него будет постоянно подаваться 15 или 16В. Безусловно, он выдержит какое-то время такое издевательство, но запас прочности будет практически равен нолю. Гораздо лучше устанавливать такие конденсаторы в цепь с напряжением 10–12В., чтобы был какой-то запас по напряжению.

Полярность подключения электролитических конденсаторов

Электролитические конденсаторы имеют отрицательный и положительный электроды. Как правило, отрицательный электрод определяется по маркировке на корпусе (белая продольная полоса за значками «-»), а положительная обкладка никак не промаркирована. Исключение – отечественные конденсаторы, где, напротив, положительный терминал промаркирован значком «+». При замене конденсаторов необходимо сопоставить и проверить, соответствует ли полярность подключения конденсатора маркировке на печатной плате (кружок, где имеется заштрихованный сегмент). Сопоставив минусовую полосу с заштрихованным сегментом, вы безошибочно вставите конденсатор. Остаётся лишь обрезать ножки конденсатора, обработать места пайки и качественно припаять. Если случайно перепутать полярность подключения, то даже абсолютно новый и вполне исправный конденсатор просто-напросто разорвётся, измазав попутно все соседние компоненты и печатную плату токопроводящим электролитом.

Немного о безопасности

Не секрет, что замена низковольтных конденсаторов может принести вред здоровью лишь в случае ошибки подключения полярности. При первом включении конденсатор взорвётся. Вторая опасность, которую стоит ожидать от конденсаторов, заключается в напряжении между его обкладками. Если вы когда-нибудь разбирали блоки питания от компьютеров, то вы, вероятно, замечали огромные электролиты на 200В. Именно в этих конденсаторах остаётся опасное высокое напряжение, которое может серьёзно травмировать вас. Перед заменой конденсаторов блоков питания рекомендуем полностью его разрядить либо резистором, либо неоновой лампочкой на 220В.

Полезный совет: такие конденсаторы очень не любят разряжаться через короткое замыкание, поэтому не замыкайте их выводы отвёрткой с целью разряда.

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

Как заменить электролитический конденсатор на материнской плате. Как самому перепаять конденсаторы. Электролитические конденсаторы блока питания и ESR

Статьи мы с вами начали знакомиться с искусством врачевания компьютерных блоков питания. Продолжим же это увлекательно дело и посмотрим внимательно на высоковольтную их часть.

Проверка высоковольтной части блока питания

После осмотра платы и восстановления паек следует проверить мультиметром (в режиме измерения сопротивления) предохранитель.

Надеюсь, вы хорошо уяснили и запомнили правила техники безопасности , изложенные ранее!

Если он перегорел, то это свидетельствует, как правило, о неисправностях в высоковольтной части.

Чаще всего неисправность предохранителя видна (если стеклянный) визуально: он внутри «грязный» («грязь» — это испарившаяся свинцовая нить).

Иногда стеклянная трубка разлетается на куски.

В этом случае надо проверить (тем же тестером) исправность высоковольтных диодов, силовых ключевых транзисторов и силового транзистора источника дежурного напряжения. Силовые транзисторы высоковольтной части находятся, как правило, на общем радиаторе.

При сгоревшем предохранителе нередко выводы коллектор-эмиттер «звонятся» накоротко, и удостовериться в этом можно и не выпаивая транзистор. С полевыми же транзисторами дело обстоит несколько сложнее.

Как проверять полевые и биполярные транзисторы, можно почитать и .

Высоковольтная часть находится в той части платы, где расположены высоковольтные конденсаторы (они больше по объему, чем низковольтные). На этих конденсаторах указывается их емкость (330 – 820 мкФ) и рабочее напряжение (200 – 400 В).

Пусть вас не удивляет, что рабочее напряжение может быть равным 200 В. В большинстве схем эти конденсаторы включены последовательно, так что их общее рабочее напряжение будет равным 400 В. Но существуют и схемы с одним конденсатором на рабочее напряжение 400 В (или даже больше).

Нередко бывает, что вместе с силовыми элементами выходят из строя электролитические конденсаторы – как низковольтные, так и высоковольтные (высоковольтные – реже).

В большинстве случаев это видно явно – конденсаторы вздуваются, верхняя крышка их лопается.

В наиболее тяжелых случаях из них вытекает электролит. Лопается она не просто так, а по местам, где ее толщина меньше.

Это сделано специально, чтобы обойтись «малой кровью». Раньше так не делали, и конденсатор при взрыве разбрасывал свои внутренности далеко вокруг. А монолитной алюминиевой оболочкой можно было и сильно в лоб получить.

Все такие конденсаторы надо заменить аналогичными. Следы электролита на плате следует тщательно удалить.

Электролитические конденсаторы блока питания и ESR

Напоминаем, что в блоках питания используются специальные низковольтные конденсаторы с низким ESR (эквивалентным последовательным сопротивлением, ЭПС).

Подобные устанавливают и на материнских платах компьютеров.

Узнать их можно по маркировке.

Например, конденсатор с низким ESR фирмы «СapXon» имеет маркировку «LZ». У «обычного» конденсатора букв LZ нет. Каждой фирмой выпускается большое количество различных типов конденсаторов. Точное значение ESR конкретного типа конденсатора можно узнать на сайте фирмы-производителя.

Производители блоков питания часто экономят на конденсаторах, ставя обычные, у которых ЭПС выше (и стоят они дешевле). Иногда даже пишут на корпусах конденсаторов «Low ESR» (низкое ЭПС).

Это обман, и такие лучше конденсаторы лучше сразу заменить .

В наиболее тяжелом режиме работают конденсаторы фильтра по шинам +3,3 В, +5 В, +12 В, так как по ним циркулируют большие токи.

Встречаются еще «подлые» случаи, когда со временем подсыхает конденсаторы небольшой емкости в источнике дежурного напряжения. При этом их емкость падает, а ESR растет.

Или емкость падает незначительно, а ESR растет сильно. При этом никаких внешних изменений формы может и не быть, так как их габариты и емкость невелики.

Это может привести к тому, что изменится величина напряжения дежурного источника. Если оно будет меньше нормы, основной инвертор блока питания вообще не включится.

Если оно будет больше, компьютер будет сбоить и «подвисать», так как часть компонентов материнской платы находится под именно этим напряжением.

Емкость можно измерить .

Впрочем, большинство тестеров может измерять емкости только до 20 мкФ, чего явно недостаточно .

Отметим, что ESR измерить штатным тестером невозможно.

Нужен специальный измеритель ESR!

У конденсаторов большой емкости ESR может иметь величину десятых и сотых долей Ома, у конденсаторов малой емкости – десятых долей или единиц Ом.

Если оно больше – такой конденсатор необходимо заменить.

Если такого измерителя нет, «подозрительный» конденсатор необходимо заменить новым (или заведомо исправным).

Отсюда мораль – не оставлять включенным источник дежурного напряжения в блоке питания. Чем меньшее время он будет работать, тем дольше будут подсыхать конденсаторы в нем.

Необходимо после окончания работы либо снимать напряжение выключателем фильтра, либо вынимать вилку кабеля питания из сетевой розетки.

В заключение скажем еще несколько слов

Об элементах высоковольтной части блока питания

В недорогих небольшой мощности (до 400 Вт) в качестве ключевых часто применяют силовые биполярные транзисторы 13007 или 13009 с токами коллектора соответственно 8 и 12 А и напряжением между эмиттером и коллектором 400 В.

В источнике дежурного напряжения может быть использован силовой полевой транзистор 2N60 с током стока 2А и напряжением сток-исток 600 В.

Впрочем, в качестве ключевых могут быть использованы полевые транзисторы, а в источнике дежурного режима – биполярный.

При отсутствии необходимых транзисторов их можно заменить аналогами.

Аналоги биполярных транзисторов должны иметь рабочее напряжение между эмиттером и коллектором и ток коллектора не ниже, чем у заменяемых.

Аналоги полевых транзисторов должны иметь рабочее напряжение сток-исток и ток стока не ниже, чем у заменяемого, а сопротивление открытого канала «сток-исток» не выше , чем у заменяемого.

Внимательный читатель может спросить: «А почему это сопротивление канала должно быть не выше? Ведь чем больше значения параметров, тем, как бы, лучше?»

Отвечаю – при одном и том же рабочем токе на канале с бОльшим сопротивлением будет, в соответствии с законом Джоуля-Ленца, рассеиваться бОльшая мощность. И, значит, он (т.е. и весь транзистор) будет сильнее греться.

Лишний нагрев нам ни к чему!

У нас блок питания, а не отопительный радиатор!

На этом, друзья, мы сегодня закончим. Нам осталось еще ознакомиться с лечением низковольтной части, чем мы займемся в следующей статье.

До встречи на блоге!

Для создания еще одного рабочего места потребовался восстановительный ремонт материнской платы компьютера с поврежденными электролитическими конденсаторами питания процессора. В принципе плата рабочая, но при внутреннем и внешнем перегреве стабильно зависала с характерным слабым химическим запахом электролита конденсаторов. Подтеки электролита хорошо просматривались на треснувших колпачках конденсаторов. Хоть я и дружу с паяльником приступал к ремонту не с полной уверенностью успеха, так как был опыт неудачного восстановления своими руками системной платы с процессором PIII. Неудача возникла прямо на старте — не удалось извлечь электролитические конденсаторы. Мне показалось, что они были просто запрессованы ножками в плату, даже при помощи стоваттного паяльника уже обломанные ножки не извлекались. Но глаза боятся, а руки делают — требовалось заменить 5 конденсаторов номиналом 3300 мкФ на 6,3В. В радиомагазине купил единственные предложенные компьютерные электролиты такого же номинала. Если есть выбор НЕ ПОКУПАЙТЕ конденсаторы с маркировкой GSC, это самые ненадежные конденсаторы. И конечно конденсаторы должны иметь еще маркировку по теплостойкости, например LOW ESR и/или указана рабочая температура 105°С. Размер купленных конденсаторов был несколько крупнее, но габариты платы позволяли их установить. Итак последовательность моих действий.

Как отремонтировать материнскую плату своими руками

1. Если есть возможность снимите с платы все мешающие элементы — память, радиатор процессора. Пользуясь случаем прочистите все закоулки от пыли при помощи кисточки и пылесоса. Перед началом работ желательно одеть одежду из натуральных тканей во избежание образования статики и повреждения платы уже статическим электричеством.

2. Для извлечения конденсаторов потребуется паяльник мощностью 50-60 Вт. Жало паяльника должно быть тонким на конце и хорошо залуженным для быстрого передачи тепла в зону касания.

3. Порядок извлечения конденсаторов следующий. Хорошо разогретым паяльником снизу платы касаемся места припайки ножки конденсатора, расплавляем припой и второй рукой небольшими усилиями пытаемся наклонить конденсатор в сторону второй ножки, в какой-no момент разогрева конденсатор должен поддаться и наклониться с извлечением выпаянной ножки. На всю операцию отводится не больше 5-7 секунд. Далее извлекаем так же вторую ножку. Если это делается впервые, то лучше потренироваться на сломанной плате или компьютерном блоке питания. Здесь опасности две: первая — это при чрезмерном усилии ножка оборвется и вторая — при перегреве может быть повреждена печатная плата, а при ее многослойной конструкции ремонт будет практически не возможен. Трудности обусловлены как мне кажется отводом тепла из зоны пайки многочисленными медными дорожками многослойной конструкции платы. Всегда при работе с компьютерными платами лучше перед самой пайкой временно отключить паяльник от сети, также в целях защиты от статики.

4. Так последовательно извлекаем все поврежденные конденсаторы. Но припаивать сразу новые пока рано.

Новые конденсаторы

Извлечение наклоном

5. Для облегчения установки новых конденсаторов сделаем приспособление из швейной иголки и ручки от зубной щетки. Подбираем швейную иглу диаметром чуть больше диаметра ножки нового конденсатора. При помощи зажигалки прогреваем иглу в 20-30мм от острого кончика до красна и остужаем на воздухе. Это позволит нам откусить кусачками кончик иглы без повреждения кусачек. Еще раз прогреваем иглу в месте среза и быстро загоняем нагретый конец в пластмассовую ручку. Игла должна прочно держаться в ручке.

6. Паяльником разогреваем крепежное отверстие, вставляем иглу и вращательно поступательными движениями расширяем отверстие до нужного диаметра. Так обрабатываем все отверстия. Качество работы еще раз проверяем на просвет.

7. Теперь требуется подготовить ножки конденсаторов к монтажу. Я рекомендую это сделать так: последовательно по кругу слегка прикусывать кусачками ножку до образования правильного круглого и аккуратного среза. Такая подготовка только облегчит последующий монтаж.

Уважаемые гости, в этой статье мы будем производить замену вздутых конденсаторов на материнской плате своими руками. Хотел бы сразу сказать, что замена конденсаторов своими руками требует знаний и умений пользования таким инструментом как пояльник. В данном случае я использовал простой советский паяльник. Если у вас такго опыта нет, то я не рекомендую браться вам за такую работу. Про замену конденсаторов на блоке питания читаем .

Обычно конденсаторы на материнской плате начинают выходить из строя через 3-4 года пользования компьютером. Это как правило явление нормальное, и все это можно решить, путем замены их на новые.

Как определить, что конденсаторы на материнской плате вздулись, какие признаки? Все сейчас разберем подробней.

Признаки неисправности конденсаторов в материнской плате

1. При включении компьютер включается, потом выключается. После 3-4 раза включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется. Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.

2. Компьютер просто не включается. Возможно этой причиной могут быть также конденсаторы, или проблема с блоком питания. Как проверить блок питания , читаем .

3. При включении или работе компьютера часто появляется синий экран . Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

4. Откройте боковую крышку системного блока и внимательно осмотрите материнскую плату. Как правило визуально можно определить, что конденсаторы на материнской плате вздулись и требуют замены. Пример на картинке.

На рисунке в приближенном виде видно, что 2 конденсатора на материнской плате вздулись и требуют замены. Необходимо осматривать материнскую плату внимательно, т.к. неопытному человеку в этом деле не всегда с первого раза можно выявить неисправный конденсатор. После этого, нам необходимо найти новые конденсаторы на замену. Обычно их можно взять со старой материнской платы или купить в радиодеталях, они не дорогие. Выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, можете взять с собой старые, чтобы показать продавцу (по вольтажу можно брать и больше, но не меньше). На своем примере это 6,3 вольт 1500 мкф . На замену я использовал 16 вольт 1500 мкф .

Если у вас или у ваших друзей есть старая материнская плата, можете выпаять их с нее. Все, у нас все готово, после этого начинаем замену конденсаторов на материнской плате своими руками. Как я уже писал выше, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если вы готовы, приступим.

При замене конденсаторов нам потребуется следующий инструмент:

  • Паяльник;
  • Канифоль;
  • Припой;
  • Зубочистки;
  • Бензин очищенный (для удаления канифоли с платы).

В идеале, для выпаивания таких деталей нужно использовать оловоотсос, ну или паяльный фен. Поскольку у меня дома есть только паяльник, то пришлось выпаивать им, поочередно нагревая ножки конденсатора и вытаскивая его. Вывод: простым паяльником это делать крайне неудобно.

После того как мы извлекли старый конденсатор и приготовили ему замену, нужно прочистить отверстия для конденсатора, иначе старый припой не даст его нормально вставить. С оловотсосом можно было бы справиться за пару секунд, но мне пришлось повозиться и использовать зубочистки. Аккуратно вставляем их в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой. Еще раз повторюсь, что это нужно делать аккуратно, так как плата многослойная и можно повредить дорожки внутри платы

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность . Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это – минус « «), но лучше всего запомнить как был установлен старый. На самих конденсаторах также есть обозначения ввиде полосы со знаком » «.

Запаиваем с обратной стороны. Фото самого процесса у меня нет, так как я не смог паять и одновременно фотографировать. Зато есть фото конечного результата)

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом мой ремонт закончился. Главное не бояться и аккуратно пробовать паять своими руками. Должен заметить, это очень увлекательный процесс.

На всякий случай, даю вам видео, где вы также можете посмотреть, как происходит процесс замены конденсаторов на материнской плате своими руками.

Вздутие конденсатора (вздутие электролита, cracked capacitor -eng.) — распространённое явление, возникающее по многим причинам, которое влечёт за собой его замену самого конденсатора и обследование окружающих цепей.

Причины вздутия конденсаторов.

Причины могут быть разнообразными, но основная — не качественный . Нет, это не говорит о том что качественные конденсаторы не вздуваются, совсем нет, ещё как вздуваются. Но давайте разберёмся с основной причиной вздутия.

Основная причина вздутия — выкипание или испарение электролита. Выкипание может происходить при высоких температурах . Стоит заметить, что это может быть как внешняя среда, которая подогревает конденсатор, так и внутренняя среда. Сам конденсатор может греться из-за несоблюдения полярности, некачественного питания, импульсов поступающих на него, пробивания изоляционного слоя, или из-за нехватки электролита (чаще всего). Также он может греться из-за не соблюдения эксплуатационных характеристик (V , ёмкость , макс. температура ).

Испарение электролита может происходить, если конденсатор имеет плохую герметичность . Со временем, уровень электролита уменьшится, а оставшийся закипает, вызвав вздутие конденсатора.

В некачественных конденсаторах, иногда происходит такое явление, что не происходит вздутие конденсатора, а электролит просто вытекает через его нижнюю часть (жидкость коричневого или жёлтого цвета). Такой конденсатор тем более подлежит замене, можно считать что он уже не работает. Если на верхней части конденсатора есть следы коррозии , значит часть электролита просочилась через верхнюю часть, а значит она не герметична. Такие «ржавые конденсаторы » тоже лучше заменить.

Бытует мнение, что вздутие — удел только электролитических конденсаторов, но это не так.

Полимерные конденсаторы тоже вздуваются и раскрываются.

Естественно вздутые конденсаторы подлежат срочной замене. Если устройство со «вздутиками» всё ещё работает, это не значит, что всё в порядке. Могут появиться сбои в работе и «странное» поведение оборудования.

Замена вздутого конденсатора.

Потребуется конденсатор с такой же ёмкостью или больше, но не меньше. То же самое касается напряжения. В любом случае, если конденсатор вздулся, лучше поставить более мощный на его замену.

Паяльником отпаиваем ножки предыдущего конденсатора, лучше взять мощный паяльник. Иголкой или тонким шилом прочищаем дырочки под контакты. Вставляем конденсатор и припаиваем с тыльной стороны. Стоит заметить что нужно соблюдать полярность , если она есть. На самой плате будет обозначение «минус», так вот конденсатор должен быть тоже помечен с одной из сторон минусом (обычно полоска). При несоблюдении полярности можно сымитировать небольшой взрыв . Даём остыть и отрезаем лишнее.

Как избежать вздутия конденсаторов.

Чтобы избежать вздутия конденсаторов:
  • Используйте качественные конденсаторы.
  • Не позволяйте конденсаторам нагревать до температуры более 45 градусов (следите за температурой окружающей их среды). Разместите их подальше от горячих радиаторов.
  • Используйте качественные входные, (если конденсаторы вздуваются в блоках питания компьютера).
  • Используйте качественные блоки питания (если конденсаторы вздуваются на материнской плате компьютера).

Соблюдение этих простых правил, убережёт вас от преждевременного выхода из строя конденсаторов.

Не секрет, что материнская плата один из ключевых элементов компьютера. Именно она объединяет все компоненты системы в единое целое. Её выход из строя всегда доставляет массу неприятностей. Хорошо, если обойдется только заменой самой платы, но если она устарела, то, зачастую, приходится менять добрую половину комплектующих (процессор, кулер, оперативная память и т.д).

Поэтому многие пользователи в первую очередь хотят попробовать отремонтировать старую материнскую плату, чтобы избежать лишних затрат.

Одной из частых причин поломок материнских плат – «вздутие» конденсаторов. Конденсаторы могут выйти из строя из за перепадов питания, высокой температуры, ну и просто от старости.

Достаточно теории, пора переходить к практике.

Я использовал следующие инструменты:

  • Паяльник;
  • Канифоль;
  • Припой;
  • Зубочистки;
  • Бензин очищенный (для удаления канифоли с платы).

Определить вздутые конденсаторы достаточно просто, если внимательно посмотреть на плату. На них могут быть следы вытекшего электролита, а также они могут выгнуться сверху или снизу, что также будет хорошо заметно.

Вот так выглядит вспухший кондер.

Первым делом, нужно найти новые запчасти подходящего номинала. Внимательно смотрим на маркировку. В моем случае это 6,3 вольт 1500 мкф . На замену я использовал 16 вольт 1500 мкф . Можно брать конденсаторы большей емкости и большего напряжения, но нужно учитывать, что, чем больше напряжение и емкость, тем больше его размеры (может просто не влезть на то же место).

Поскольку, был вечер и магазины не работали, пришлось выпаять нужный конденсатор из нерабочей материнской платы.

В идеале, для выпаивания таких деталей нужно использовать оловоотсос, ну или паяльный фен. Поскольку у меня дома есть только паяльник, то пришлось выпаивать им, поочередно нагревая ножки конденсатора и вытаскивая его. Вывод: простым паяльником это делать крайне неудобно.

После того как мы извлекли старый конденсатор и приготовили ему замену, нужно прочистить отверстия для конденсатора, иначе старый припой не даст его нормально вставить. С оловотсосом можно было бы справиться за пару секунд, но мне пришлось повозиться и использовать зубочистки. Аккуратно вставляем их в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой. Еще раз повторюсь, что это нужно делать аккуратно, так как плата многослойная и можно повредить дорожки внутри платы.

Осталось самое приятное.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность . Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это – минус « «), но лучше всего запомнить как был установлен старый. На самих конденсаторах также есть обозначения ввиде полосы со знаком » «.

Запаиваем с обратной стороны. Фото самого процесса у меня нет, так как я не смог паять и одновременно фотографировать. Зато есть фото конечного результата)

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом мой ремонт закончился. Главное не бояться и аккуратно пробовать паять своими руками. Должен заметить, это очень увлекательный процесс.

Если у кого-то есть вопросы или дополнения, то пишите их в комментариях.

Как заменить конденсатор в электронной аппаратуре. Как заменить конденсаторы на материнской плате

Вздутие конденсатора (вздутие электролита, cracked capacitor -eng.) — распространённое явление, возникающее по многим причинам, которое влечёт за собой его замену самого конденсатора и обследование окружающих цепей.

Причины вздутия конденсаторов.

Причины могут быть разнообразными, но основная — не качественный . Нет, это не говорит о том что качественные конденсаторы не вздуваются, совсем нет, ещё как вздуваются. Но давайте разберёмся с основной причиной вздутия.

Основная причина вздутия — выкипание или испарение электролита. Выкипание может происходить при высоких температурах . Стоит заметить, что это может быть как внешняя среда, которая подогревает конденсатор, так и внутренняя среда. Сам конденсатор может греться из-за несоблюдения полярности, некачественного питания, импульсов поступающих на него, пробивания изоляционного слоя, или из-за нехватки электролита (чаще всего). Также он может греться из-за не соблюдения эксплуатационных характеристик (V , ёмкость , макс. температура ).

Испарение электролита может происходить, если конденсатор имеет плохую герметичность . Со временем, уровень электролита уменьшится, а оставшийся закипает, вызвав вздутие конденсатора.

В некачественных конденсаторах, иногда происходит такое явление, что не происходит вздутие конденсатора, а электролит просто вытекает через его нижнюю часть (жидкость коричневого или жёлтого цвета). Такой конденсатор тем более подлежит замене, можно считать что он уже не работает. Если на верхней части конденсатора есть следы коррозии , значит часть электролита просочилась через верхнюю часть, а значит она не герметична. Такие «ржавые конденсаторы » тоже лучше заменить.

Бытует мнение, что вздутие — удел только электролитических конденсаторов, но это не так.

Полимерные конденсаторы тоже вздуваются и раскрываются.

Естественно вздутые конденсаторы подлежат срочной замене. Если устройство со «вздутиками» всё ещё работает, это не значит, что всё в порядке. Могут появиться сбои в работе и «странное» поведение оборудования.

Замена вздутого конденсатора.

Потребуется конденсатор с такой же ёмкостью или больше, но не меньше. То же самое касается напряжения. В любом случае, если конденсатор вздулся, лучше поставить более мощный на его замену.

Паяльником отпаиваем ножки предыдущего конденсатора, лучше взять мощный паяльник. Иголкой или тонким шилом прочищаем дырочки под контакты. Вставляем конденсатор и припаиваем с тыльной стороны. Стоит заметить что нужно соблюдать полярность , если она есть. На самой плате будет обозначение «минус», так вот конденсатор должен быть тоже помечен с одной из сторон минусом (обычно полоска). При несоблюдении полярности можно сымитировать небольшой взрыв . Даём остыть и отрезаем лишнее.

Как избежать вздутия конденсаторов.

Чтобы избежать вздутия конденсаторов:
  • Используйте качественные конденсаторы.
  • Не позволяйте конденсаторам нагревать до температуры более 45 градусов (следите за температурой окружающей их среды). Разместите их подальше от горячих радиаторов.
  • Используйте качественные входные, (если конденсаторы вздуваются в блоках питания компьютера).
  • Используйте качественные блоки питания (если конденсаторы вздуваются на материнской плате компьютера).

Соблюдение этих простых правил, убережёт вас от преждевременного выхода из строя конденсаторов.

Не секрет, что материнская плата один из ключевых элементов компьютера. Именно она объединяет все компоненты системы в единое целое. Её выход из строя всегда доставляет массу неприятностей. Хорошо, если обойдется только заменой самой платы, но если она устарела, то, зачастую, приходится менять добрую половину комплектующих (процессор, кулер, оперативная память и т.д).

Поэтому многие пользователи в первую очередь хотят попробовать отремонтировать старую материнскую плату, чтобы избежать лишних затрат.

Одной из частых причин поломок материнских плат – «вздутие» конденсаторов. Конденсаторы могут выйти из строя из за перепадов питания, высокой температуры, ну и просто от старости.

Достаточно теории, пора переходить к практике.

Я использовал следующие инструменты:

  • Паяльник;
  • Канифоль;
  • Припой;
  • Зубочистки;
  • Бензин очищенный (для удаления канифоли с платы).

Определить вздутые конденсаторы достаточно просто, если внимательно посмотреть на плату. На них могут быть следы вытекшего электролита, а также они могут выгнуться сверху или снизу, что также будет хорошо заметно.

Вот так выглядит вспухший кондер.

Первым делом, нужно найти новые запчасти подходящего номинала. Внимательно смотрим на маркировку. В моем случае это 6,3 вольт 1500 мкф . На замену я использовал 16 вольт 1500 мкф . Можно брать конденсаторы большей емкости и большего напряжения, но нужно учитывать, что, чем больше напряжение и емкость, тем больше его размеры (может просто не влезть на то же место).

Поскольку, был вечер и магазины не работали, пришлось выпаять нужный конденсатор из нерабочей материнской платы.

В идеале, для выпаивания таких деталей нужно использовать оловоотсос, ну или паяльный фен. Поскольку у меня дома есть только паяльник, то пришлось выпаивать им, поочередно нагревая ножки конденсатора и вытаскивая его. Вывод: простым паяльником это делать крайне неудобно.

После того как мы извлекли старый конденсатор и приготовили ему замену, нужно прочистить отверстия для конденсатора, иначе старый припой не даст его нормально вставить. С оловотсосом можно было бы справиться за пару секунд, но мне пришлось повозиться и использовать зубочистки. Аккуратно вставляем их в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой. Еще раз повторюсь, что это нужно делать аккуратно, так как плата многослойная и можно повредить дорожки внутри платы.

Осталось самое приятное.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность . Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это – минус « «), но лучше всего запомнить как был установлен старый. На самих конденсаторах также есть обозначения ввиде полосы со знаком » «.

Запаиваем с обратной стороны. Фото самого процесса у меня нет, так как я не смог паять и одновременно фотографировать. Зато есть фото конечного результата)

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом мой ремонт закончился. Главное не бояться и аккуратно пробовать паять своими руками. Должен заметить, это очень увлекательный процесс.

Если у кого-то есть вопросы или дополнения, то пишите их в комментариях.

Материнская плата очень сложное электронное устройство, которое объединяет и согласовывает работу всех комплектующих компьютера. Со временем материнская плата может выйти из строя по различным причинам: перегрев, старение комплектующих и т.п.

Очень часто на старых (материнках) можно обнаружить вздувшиеся электролитические конденсаторы. Выглядят они как бочонки с вздутым верхом или низом. При этом рядом с конденсатором могут быть следы вытекшего электролита. Такая системная плата, в принципе, может успешно работать, но чаще всего компьютер с такой материнской платой не запускается.

Чтобы привести материнскую плату в (чувства) следует заменить вздувшиеся конденсаторы на новые. Такой ремонт можно сделать самостоятельно без помощи сервисного центра. Однако, если вы ни разу не держали в руках паяльник и не имеете малейшего представления о том, как с ним работать, то лучше обратитесь в , дабы избежать усугубления ситуации и окончательно не (убить) системную материнскую плату.

Для замены конденсаторов вам понадобится маломощный паяльник (до 40Вт) с узким жалом или паяльная станция (в идеале), канифоль или паяльная кислота (предпочтительней), оловянный припой, спирт или очищенный бензин.

Перед тем как приступать к выпаиванию конденсатора внимательно осмотрите материнскую плату, найдите все конденсаторы, которые вздулись, или имеют следы вытекшего электролита. Электролитические конденсаторы припаиваются с соблюдением полярности. На их корпусе обычно нанесено обозначение отрицательного (-) вывода. На самой материнской плате, когда вы выпаяет конденсатор, также имеется маркировка полярности. Чтобы не перепутать полярность вы можете сфотографировать расположение конденсаторов.

И еще несколько слов о подготовительной работе. Материнская плата чувствительна к статическому напряжению, поэтому паяльник и материнскую плату желательно было бы заземлить. По этой же причине нельзя работать в синтетической одежде без соблюдения дополнительных мер защиты. Используйте антистатические перчатки и браслеты.

Выпаивание конденсатора требует особой осторожности, так как печатная плата имеет многослойный монтаж. Это означает, что дорожки проходят не только с обеих сторон платы, но и внутри нее! Если вы используете паяльник, то поочередно прогревайте ножки конденсатора и аккуратно извлеките его из печатной платы. После этого отверстия в плате следует очистить от остатка припоя. Можно использовать зубочистку, которую следует вставлять поочередно в каждое отверстие и прогревать плату с другой стороны паяльником. Таким образом, остатки олова будут удалены. Если используется паяльник с олово отсосом, то очистка платы от остатков припоя не потребуется.

Когда конденсаторы выпаяны, необходимо проверить их номинал и рабочее напряжение, чтобы приобрести новые на замену. Емкость конденсатора указывается в микрофарадах (мкФ, uF), а напряжение в вольтах (В, V). Если выпаянный конденсатор, например, имеет маркировку 6,3V 2000uF, то его рабочее напряжение составляет 6,3 В, а емкость 2000мкФ. Приобретая новый конденсатор вы можете не найти точно такого же по емкости и рабочему напряжению. Допускается установка конденсаторов с большим рабочим напряжением (12В вместо 6,3В) и большей емкостью (2200 мкФ вместо 2000мкФ). Использовать конденсаторы на меньшее напряжение крайне не рекомендуется, так как такой конденсатор очень быстро выйдет из строя.

Также при выборе конденсатора следует особое внимание уделять его габариту, так как материнская плата имеет плотный монтаж, и компоненты зачастую установлены практически впритык, то установка большего по диаметру конденсатора может быть невозможна. С конденсаторами больших по высоте проблем с установкой обычно не бывает.

Теперь остается только аккуратно припаять новый конденсатор и проверить работоспособность материнской платы. Установите конденсатор в материнскую плату, обязательно соблюдая полярность, и припаяйте его ножки с обратной стороны печатной платы. Не используйте большое количество припоя, чтобы он не растекся и не замкнул соседние контакты. При пайке следует не допускать излишнего нагрева платы, так как это может привести к отпаиванию соседних элементов. После того как все будет припаяно, удалите остатки паяльной кислоты или канифоли с печатной платы с помощью спирта или очищенного бензина.

Аппаратные сбои могут проявляться по-разному: “вылет” компьютера, артефакты на экране, ошибки ввода/вывода при доступе к жёстком диску. Обычно проблему пытаешься решить установкой новых драйверов, настройкой параметров “железа” в операционной системе, регулировкой опций BIOS или, если уж совсем ничего не помогает, заменой комплектующих, таких, как память. Но что делать, если всё это не приводит к нужному результату?

К сожалению, сбоить может не только операционная система или драйверы устройств. И даже покупка новейших комплектующих, таких, как четырёхядерные процессоры и терабайтные жёсткие диски, не может предотвратить аппаратные сбои. Производители “железа” обычно определяют срок эксплуатации каждого компонента компьютера или ноутбука. Для жёстких дисков это, как правило, пять лет, но другие компоненты могут работать и дольше. Ключевые комплектующие, такие, как процессоры, память, материнская плата или видеокарта, обычно работают существенно дольше. Если, конечно, условия эксплуатации и охлаждения нормальные. Но сколько на самом деле прослужит то или иное комплектующее, предсказать невозможно.

Одной из причин странного поведения компьютера могут являться вышедшие из строя электролитические конденсаторы, которые встречаются на многих полупроводниковых комплектующих, на той же материнской плате или на видеокарте. И что же делать, если неправильно работающий конденсатор на материнской плате привёл к сбою компьютера? Если гарантия не кончилась, можно сходить в магазин и поменять старую материнскую плату на новую. Возможно, при этом потребуется купить новую память и процессор. Но есть и менее дорогое решение. Если вы не боитесь пайки, электролитический конденсатор можно заменить самостоятельно. В нашей статье мы покажем, как можно недорого оживить материнскую плату или видеокарту, если под рукой есть необходимые инструменты.

Конденсаторы и резисторы – наиболее часто используемые компоненты электрических схем. Конденсаторы стоят в диплексорах, колебательных контурах, подавителях помех или в фильтрах. Электролитические конденсаторы отличаются от других конденсаторов тем, что в алюминиевом корпусе находится жидкость, проводящая ток при подаче напряжения. Жидкость называется электролитом.

Почти во всех электрических схемах в фильтрах блоков питания применяются конденсаторы. Они справляются с пиками напряжения, на которые трансформаторы или транзисторы не могут быстро среагировать. Если не вдаваться в детали, конденсатор работает подобно аккумулятору: он заряжается, если подаётся напряжение. Заряд в конденсаторе сохраняется, когда конденсатор отключается от источника напряжения. Подобные свойства позволяют выровнять напряжение, скажем, в блоке питания.

Трансформаторы позволяют снизить напряжение в блоке питания до требуемого уровня. Выпрямители создают постоянный ток из подаваемого переменного тока. Но ток после выпрямителя не идеален, пульсации всё равно заметны. Но краткие падения напряжения, вызываемые пульсациями, можно компенсировать конденсатором, который работает как источник дополнительного напряжения, стабилизируя подаваемое напряжение. Для схем стабилизации используются конденсаторы с меньшим эквивалентным последовательным сопротивлением (Equivalent Series Resistance, ESR), которые позволяют эффективно справляться с пульсациями.


Потёкшие конденсаторы рядом с AGP-слотом.

Внутреннее сопротивление (ESR) обычно определяется проводимостью электролита. Поэтому электролиты, используемые в конденсаторах с низким внутренним сопротивлением, должны обладать очень хорошей проводимостью. Чтобы повысить проводимость электролита (он состоит по большей части из диспергаторов), необходимо использовать добавки. И одна из таких добавок – вода. Благодаря диссоциации воды высвобождаются свободные ионы, поэтому и электрическая проводимость увеличивается.

Впрочем, недостаточно очищенная вода взаимодействует с алюминиевым корпусом конденсатора, вызывая коррозию. При этом создаются газы, которые увеличивают внутреннее давление, – и конденсатор начинает вздуваться. На верхней плоскости конденсатора есть специальные насечки, которые раскрываются при слишком высоком давлении, позволяя газу выйти наружу. Иногда насечки не помогают, и конденсатор “красиво” взрывается. То же самое происходит и при подаче слишком высокого напряжения. Электролит, который находился в конденсаторе, может вытечь на материнскую плату и вызвать короткое замыкание. И даже пожар. Вообще, надёжность материнских плат вызывала у производителей некоторые проблемы между 1999 и 2005 годами. Они часто использовали конденсаторы с некачественным электролитом, что приводило к многочисленным сбоям и существенному снижению надёжности материнских плат.

Но привести к сбою конденсатора может не только некачественный электролит. Подобно любой другой жидкости, электролит может изменить своё физическое состояние и попросту испариться. И это может произойти не только в работающей системе, но и тогда, когда система выключена или материнская плата вообще хранится отдельно. От хорошего охлаждения компьютерного корпуса выигрывают не только такие комплектующие, как память или процессоры. Хорошее охлаждение также увеличивает и время жизни конденсаторов, поскольку вероятность испарения зависит от температуры окружающей среды. Понижение температуры на 10°C удваивает время жизни конденсатора.


Конденсатор имеет полную ёмкость 1000 мкФ.

Обычно конденсатор можно распознать по последствиям взрыва. Вздутие или даже нарушение целостности сигнализирует о том, что конденсатор вскоре выйдет из строя (если он ещё работает). Иногда резиновая прокладка, закрывающая конденсатор снизу, выталкивается газом наружу. Конденсаторы, чей электролит улетучился и не оставил следов на алюминиевом корпусе, весьма трудно обнаружить. Если конденсатор высыхает, то уменьшается и его ёмкость. Чтобы измерить ёмкость конденсатора, необходимо использовать мультиметр (см. иллюстрацию выше). В нашем случае использовался Digitek DS-568F, который для наших целей вполне подходит, да и стоит он меньше $40.

Мы пытались найти материнскую плату с вышедшими из строя конденсаторами – и нашли её. На нашем складе долгое время пылилась старая материнская плата от MSI. Впрочем, дефектные конденсаторы – проблема практически любого производителя. Поэтому данный продукт выбран в качестве примера.

Плата K7Master имеет два процессорных сокета, поэтому она вполне достойна реанимации. Если придётся менять эту материнскую плату, то придётся менять и процессоры, и память (в данном случае используется регистровая DDR). А это не очень приятно.

Мы не знали, все ли конденсаторы вышли из строя. Но поскольку конденсаторы одинаковые, то мы предположили, что все они нуждаются в замене. Таким образом, нам нужно заменить 26 конденсаторов более новыми аналогами с такой же ёмкостью.


Простой цилиндрический электролитический конденсатор.

Вообще, купить конденсаторы с низким сопротивлением оказалось труднее, чем мы думали, тем более что мы хотели оставаться в определённых ценовых границах. Мы изначально полагали, что замена конденсаторов обойдётся дёшево. Но следует помнить, что если что-то пойдёт не так, то вам придётся покупать новую материнскую плату, процессор и память.

Для материнской платы K7D Master нам нужно было купить 26 цилиндрических конденсаторов ёмкостью 1000 мкФ, напряжением 6,3 В и температурным порогом 105°C. Собственно, все технические характеристики нанесены на корпус конденсатора. Диаметр конденсатора составляет около 8 мм, высота – около 16 мм, а расстояние между “ножками” – 3,5 мм.


Конденсаторы, которые мы заказали.

После недолгого поиска мы заказали конденсаторы у одной мелкой фирмы, которая продаёт их недорого. Мы не нашли конденсаторы с напряжением 6,3 В, поэтому пришлось обойтись моделями на 10 В. Расстояние между ножками и диаметр у них такой же, хотя высота составляет 20 мм. В зависимости от дизайна вашей материнской платы, с дополнительными 4 мм могут возникнуть проблемы. Перед тем, как вы закажете конденсаторы, посмотрите, сколько свободного места от конденсаторов до карт расширения, например, до видеокарты. У нас никаких проблем с разницей в 4 мм по высоте не возникло. Купив 30 конденсаторов, мы заплатили за каждый около 50 центов, без учёта доставки.

Начинаем замену


Паяльная станция, управляемая процессором.

Перед тем, как мы начнём весь процесс пайки, следует напомнить, что если вы последуете нашим рекомендациям, то следует полагаться только на свой страх и риск. Восстановлением материнской платы следует заниматься только тем пользователям, кто знаком с техникой пайки. Мы не несём ответственности за возможные повреждения оборудования.

Для нашего задания необходимы профессиональные паяльники. Здесь не подойдут ни ручные паяльники, ни ручные отсосы припоя, поскольку нагрев и удаление припоя должны выполняться одновременно. Иначе припой сразу же застынет. Слои материнской платы способны забрать немало тепла, поэтому ручные отсосы припоя помогают мало.

Что касается откачивания припоя, то острие должно быть диаметром 0,8-1,0 мм, чтобы припой можно было легко выкачать из места пайки. В нашей лаборатории мы использовали довольно старую паяльную станцию PLE-9001 с процессорным управлением. На данный момент мы можем рекомендовать ещё одного производителя – ERSA, который выпускает полный спектр продуктов.


Откачиваем припой с помощью электрического насоса.

Кроме того, нам понадобится припой и специальные кусачки. Ещё пригодится пластиковый зажим, фиксирующий материнскую плату в вертикальном положении во время пайки.

Закрепив в зажиме материнскую плату, мы начали выпаивать конденсаторы с обратной стороны платы при помощи паяльника.

Иногда припой так и не выходит из места пайки, сколько бы мы его ни нагревали и откачивали. Поскольку нам необходимо отверстие, мы взяли небольшой металлический стержень (диаметр 0,8 мм), которым и прочищали отверстие, удерживая стержень в небольших плоскогубцах и аккуратно его нагревая. Если всё пойдёт как надо, то отверстие можно будет прочистить. Но будьте осторожны: применив слишком большое усилие, можно повредить слои, окружающие отверстия.


Очищаем отверстия с помощью металлического стержня.

Если и этот способ не поможет, то остаётся просверлить отверстие. Но мы эту процедуру не рекомендуем! К ней следует прибегать, если только вы не смогли откачать припой, и не помог металлический стержень.


Сверлим отверстие в материнской плате – только в крайнем случае.

Теперь мы выпаяли все плохие конденсаторы с материнской платы и можем впаивать новые. Во время пайки следите за соблюдением полярности. Если вы перепутаете плюс с минусом, то получите взорвавшийся конденсатор и дополнительную работу. У новых конденсаторов ножка с “плюсом” длиннее. Но не мешает лишний раз удостовериться, рассмотрев конденсатор поближе: на корпусе есть маркировка. Оба полюса отмечены и на материнской плате.


Следите за полярностью!


Насаживаем конденсатор.


Немного сгибаем ножки анода и катода вбок, чтобы конденсатор не выпал.


Затем припаиваем конденсатор.


И убираем лишние ножки.


Всё готово! Материнская плата снова работает!

Заключение

Как демонстрирует наша статья, материнскую плату во многих случаях можно отремонтировать в домашних условиях. Тем более, что обойдётся это в копейки, поскольку новые конденсаторы стоят немного.

Сегодня производители материнских плат всё больше используют твёрдотельные конденсаторы, но потёкшие электролитические конденсаторы по-прежнему являются одной из главных причин сбоя материнской платы. При этом нужно всё тщательно взвешивать: даже если гарантия на материнскую плату есть, в ряде случаев лучше не прибегать к замене. Возможно, у продавца нет точно такой же модели материнской платы, поэтому он предложит в обмен новую плату, для которой может потребоваться покупка новой памяти и процессора.

Но не стоит отчаиваться. Если вы знаете, что сбой вызван конденсаторами, их вполне можно заменить самостоятельно. Всё это обойдётся не дороже $15. Если вы умеете работать с паяльником, да и под рукой есть все необходимые инструменты, можно сэкономить на замене материнской платы, процессора и памяти. Кроме того, всё сказанное относится не только к материнским платам: конденсаторы на видеокартах тоже выходят из строя.

Если вы хорошо работаете с паяльником, то конденсаторы можно будет заменить меньше, чем за час, так как работа не очень сложная. Конечно, если есть необходимые инструменты. Если же инструментов нет, то почему бы не обратиться к другу, который “родился” с паяльником? Материнская плата всё равно “умерла”. Так почему бы не дать ей новую жизнь?

Электролитические конденсаторы – разновидность конденсаторов , в которых диэлектриком между обкладками является пленка оксида металла на границе металла и электролита. Этот окисел получают методом электрохимического анодирования, что обеспечивает высокую равномерность изолирующего слоя.

Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная выштамповка.

Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.

Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.

Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.

Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:

Откручиваем 4-ре винта и снимаем крышку БП:

Смотрим на вздутые конденсаторы и записываем их емкость и напряжение — это основные параметры для покупки новых кондеров:

К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.

Выпаиваем конденсаторы:

Скорее всего, при покупке новых конденсаторов, особенно при замене их в материнской плате, Вам зададут вопрос: — «А Вам простой или для материнских плат?»

Чем же отличаются компьютерные конденсаторы от обычных?

До последнего времени четкое определение конденсатора с низким ESR отсутствовало.

Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.

Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.

В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:

  • срок службы больше, чем у стандартных конденсаторов;
  • максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
  • пульсирующий ток определяется на частоте 100 кГц;
  • повышенная температурная стабильность (температурный коэффициент импеданса) .

Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.

Впаиваем новые конденсаторы соблюдая полярность:

Включаем и проверяем блок питания, все работает.

Замена конденсаторов в блоке питания. Как самому перепаять конденсаторы

Если Ваш компьютер зависает, работет с ошибками, не устанавливается Windows . Если компьютер не запускается вообще, или запустившись, сразу останавливается, не поленитесь открыть крышку системного блока и проблема может быть увидена не вооруженным глазом – это электролитические конденсаторы на материнской плате . Одной из наиболее часто встречающихся причин неисправности материнской платы являются пробой, закорачивание или утечки электролитических конденсаторов. Выходят из строя обычно конденсаторы фильтров стабилизатора напряжения питания процессора, или северного моста.

Обычно неисправные конденсаторы можно обнаружить по вздувшейся задней части корпуса или вытекшему электролиту, но не обязательно. Бывает что конденсатор внешне абсолютно нормальный, но он также не исправен. Грубую проверку электролитического конденсатора , не имеющего внешних повреждений, можно сделать с помощью стрелочного омметра по броску стрелки. Для проверки конденсатора омметр ставят на низший диапазон измерения сопротивления и подключают к выводам конденсатора, в начальный период конденсатор начнет заряжаться и стрелка прибора отклонится, а затем по мере зарядки вернётся на место. Можно повторить проверку, поменяв выводы конденсатора. Чем больше и медленнее отклоняется стрелка, тем больше ёмкость конденсатора. Если омметр показывает ноль, то конденсатор закорочен, а если бесконечность, то вероятен обрыв. Если по мере возврата стрелки в исходное положение она останавливается, на каком либо положении, не возвращясь в исходное, то конденсатор также неисправен.

Чтобы приблизительно определить емкость конденсатора можно сравнить поведение стрелки прибора при подключении заведомо исправного конденсатора такой же ёмкости и проверяемого. Чтобы не повредить прибор необходимо разрядить конденсатор, закоротив его выводы. Иногда состояние конденсатора можно определить омметром не выпаивая его, если он не шунтируется другими элементами схемы, но для качественной проверки все же лучше его отпаять. Отпаивать и припаивать конденсаторы можно любым паяльником не очень большой мощности (до 65 ватт) с применением канифоли или другого паяльного флюса. После отпайки конденсаторов нужно очистить от припоя отверстия. Я делаю это с помощью обычной швейной иглы, прикладывая остриё иглы к отверстию со стороны расположения корпусов конденсаторов и одновременно жало паяльника с другой стороны.

Ёмкость конденсаторов не обязательно подбирать точно, можно с отклонением в любую сторону до 30% и даже более. Если ёмкость имеющихся конденсаторов значительно меньше, то можно добавить еще один, в фильтрах стабилизаторов процессоров они соединены параллельно и есть свободные, резервные места. Номинал напряжения конденсаторов ни в коем случае не стоит выбирать меньше чем прежде. Следует обратить внимание на температурный номинал, он должен быть 105 0 C. Обязательно нужно соблюдать полярность. Если отпаяв конденсаторы, Вы не запомнили, как они стояли, то посмотрите внимательно, как расположены другие и впаяйте также. Подбирая конденсаторы для замены тех, которые расположены около процессора, необходимо учитывать радиатор кулера, чтобы они не помешали установить его на место. Если вы не имеете возможности или желания заменять конденсаторы, то обратитесь к специалистам, которые смогут это сделать качественно и без проблем. Обычно стоимость такого ремонта не превышает 50% стоимости материнской платы. Хотя, гарантию Вам в этом случае, скорее всего никто не даст. Решать Вам, ремонтировать или менять?

Электролитические конденсаторы – разновидность конденсаторов , в которых диэлектриком между обкладками является пленка оксида металла на границе металла и электролита. Этот окисел получают методом электрохимического анодирования, что обеспечивает высокую равномерность изолирующего слоя.

Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная выштамповка.

Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.

Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.

Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.

Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:

Откручиваем 4-ре винта и снимаем крышку БП:

Смотрим на вздутые конденсаторы и записываем их емкость и напряжение — это основные параметры для покупки новых кондеров:

К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.

Выпаиваем конденсаторы:

Скорее всего, при покупке новых конденсаторов, особенно при замене их в материнской плате, Вам зададут вопрос: — «А Вам простой или для материнских плат?»

Чем же отличаются компьютерные конденсаторы от обычных?

До последнего времени четкое определение конденсатора с низким ESR отсутствовало.

Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.

Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.

В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:

  • срок службы больше, чем у стандартных конденсаторов;
  • максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
  • пульсирующий ток определяется на частоте 100 кГц;
  • повышенная температурная стабильность (температурный коэффициент импеданса) .

Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.

Впаиваем новые конденсаторы соблюдая полярность:

Включаем и проверяем блок питания, все работает.

Аппаратные сбои могут проявляться по-разному: “вылет” компьютера, артефакты на экране, ошибки ввода/вывода при доступе к жёстком диску. Обычно проблему пытаешься решить установкой новых драйверов, настройкой параметров “железа” в операционной системе, регулировкой опций BIOS или, если уж совсем ничего не помогает, заменой комплектующих, таких, как память. Но что делать, если всё это не приводит к нужному результату?

К сожалению, сбоить может не только операционная система или драйверы устройств. И даже покупка новейших комплектующих, таких, как четырёхядерные процессоры и терабайтные жёсткие диски, не может предотвратить аппаратные сбои. Производители “железа” обычно определяют срок эксплуатации каждого компонента компьютера или ноутбука. Для жёстких дисков это, как правило, пять лет, но другие компоненты могут работать и дольше. Ключевые комплектующие, такие, как процессоры, память, материнская плата или видеокарта, обычно работают существенно дольше. Если, конечно, условия эксплуатации и охлаждения нормальные. Но сколько на самом деле прослужит то или иное комплектующее, предсказать невозможно.

Одной из причин странного поведения компьютера могут являться вышедшие из строя электролитические конденсаторы, которые встречаются на многих полупроводниковых комплектующих, на той же материнской плате или на видеокарте. И что же делать, если неправильно работающий конденсатор на материнской плате привёл к сбою компьютера? Если гарантия не кончилась, можно сходить в магазин и поменять старую материнскую плату на новую. Возможно, при этом потребуется купить новую память и процессор. Но есть и менее дорогое решение. Если вы не боитесь пайки, электролитический конденсатор можно заменить самостоятельно. В нашей статье мы покажем, как можно недорого оживить материнскую плату или видеокарту, если под рукой есть необходимые инструменты.

Конденсаторы и резисторы – наиболее часто используемые компоненты электрических схем. Конденсаторы стоят в диплексорах, колебательных контурах, подавителях помех или в фильтрах. Электролитические конденсаторы отличаются от других конденсаторов тем, что в алюминиевом корпусе находится жидкость, проводящая ток при подаче напряжения. Жидкость называется электролитом.

Почти во всех электрических схемах в фильтрах блоков питания применяются конденсаторы. Они справляются с пиками напряжения, на которые трансформаторы или транзисторы не могут быстро среагировать. Если не вдаваться в детали, конденсатор работает подобно аккумулятору: он заряжается, если подаётся напряжение. Заряд в конденсаторе сохраняется, когда конденсатор отключается от источника напряжения. Подобные свойства позволяют выровнять напряжение, скажем, в блоке питания.

Трансформаторы позволяют снизить напряжение в блоке питания до требуемого уровня. Выпрямители создают постоянный ток из подаваемого переменного тока. Но ток после выпрямителя не идеален, пульсации всё равно заметны. Но краткие падения напряжения, вызываемые пульсациями, можно компенсировать конденсатором, который работает как источник дополнительного напряжения, стабилизируя подаваемое напряжение. Для схем стабилизации используются конденсаторы с меньшим эквивалентным последовательным сопротивлением (Equivalent Series Resistance, ESR), которые позволяют эффективно справляться с пульсациями.


Потёкшие конденсаторы рядом с AGP-слотом.

Внутреннее сопротивление (ESR) обычно определяется проводимостью электролита. Поэтому электролиты, используемые в конденсаторах с низким внутренним сопротивлением, должны обладать очень хорошей проводимостью. Чтобы повысить проводимость электролита (он состоит по большей части из диспергаторов), необходимо использовать добавки. И одна из таких добавок – вода. Благодаря диссоциации воды высвобождаются свободные ионы, поэтому и электрическая проводимость увеличивается.

Впрочем, недостаточно очищенная вода взаимодействует с алюминиевым корпусом конденсатора, вызывая коррозию. При этом создаются газы, которые увеличивают внутреннее давление, – и конденсатор начинает вздуваться. На верхней плоскости конденсатора есть специальные насечки, которые раскрываются при слишком высоком давлении, позволяя газу выйти наружу. Иногда насечки не помогают, и конденсатор “красиво” взрывается. То же самое происходит и при подаче слишком высокого напряжения. Электролит, который находился в конденсаторе, может вытечь на материнскую плату и вызвать короткое замыкание. И даже пожар. Вообще, надёжность материнских плат вызывала у производителей некоторые проблемы между 1999 и 2005 годами. Они часто использовали конденсаторы с некачественным электролитом, что приводило к многочисленным сбоям и существенному снижению надёжности материнских плат.

Но привести к сбою конденсатора может не только некачественный электролит. Подобно любой другой жидкости, электролит может изменить своё физическое состояние и попросту испариться. И это может произойти не только в работающей системе, но и тогда, когда система выключена или материнская плата вообще хранится отдельно. От хорошего охлаждения компьютерного корпуса выигрывают не только такие комплектующие, как память или процессоры. Хорошее охлаждение также увеличивает и время жизни конденсаторов, поскольку вероятность испарения зависит от температуры окружающей среды. Понижение температуры на 10°C удваивает время жизни конденсатора.


Конденсатор имеет полную ёмкость 1000 мкФ.

Обычно конденсатор можно распознать по последствиям взрыва. Вздутие или даже нарушение целостности сигнализирует о том, что конденсатор вскоре выйдет из строя (если он ещё работает). Иногда резиновая прокладка, закрывающая конденсатор снизу, выталкивается газом наружу. Конденсаторы, чей электролит улетучился и не оставил следов на алюминиевом корпусе, весьма трудно обнаружить. Если конденсатор высыхает, то уменьшается и его ёмкость. Чтобы измерить ёмкость конденсатора, необходимо использовать мультиметр (см. иллюстрацию выше). В нашем случае использовался Digitek DS-568F, который для наших целей вполне подходит, да и стоит он меньше $40.

Мы пытались найти материнскую плату с вышедшими из строя конденсаторами – и нашли её. На нашем складе долгое время пылилась старая материнская плата от MSI. Впрочем, дефектные конденсаторы – проблема практически любого производителя. Поэтому данный продукт выбран в качестве примера.

Плата K7Master имеет два процессорных сокета, поэтому она вполне достойна реанимации. Если придётся менять эту материнскую плату, то придётся менять и процессоры, и память (в данном случае используется регистровая DDR). А это не очень приятно.

Мы не знали, все ли конденсаторы вышли из строя. Но поскольку конденсаторы одинаковые, то мы предположили, что все они нуждаются в замене. Таким образом, нам нужно заменить 26 конденсаторов более новыми аналогами с такой же ёмкостью.


Простой цилиндрический электролитический конденсатор.

Вообще, купить конденсаторы с низким сопротивлением оказалось труднее, чем мы думали, тем более что мы хотели оставаться в определённых ценовых границах. Мы изначально полагали, что замена конденсаторов обойдётся дёшево. Но следует помнить, что если что-то пойдёт не так, то вам придётся покупать новую материнскую плату, процессор и память.

Для материнской платы K7D Master нам нужно было купить 26 цилиндрических конденсаторов ёмкостью 1000 мкФ, напряжением 6,3 В и температурным порогом 105°C. Собственно, все технические характеристики нанесены на корпус конденсатора. Диаметр конденсатора составляет около 8 мм, высота – около 16 мм, а расстояние между “ножками” – 3,5 мм.


Конденсаторы, которые мы заказали.

После недолгого поиска мы заказали конденсаторы у одной мелкой фирмы, которая продаёт их недорого. Мы не нашли конденсаторы с напряжением 6,3 В, поэтому пришлось обойтись моделями на 10 В. Расстояние между ножками и диаметр у них такой же, хотя высота составляет 20 мм. В зависимости от дизайна вашей материнской платы, с дополнительными 4 мм могут возникнуть проблемы. Перед тем, как вы закажете конденсаторы, посмотрите, сколько свободного места от конденсаторов до карт расширения, например, до видеокарты. У нас никаких проблем с разницей в 4 мм по высоте не возникло. Купив 30 конденсаторов, мы заплатили за каждый около 50 центов, без учёта доставки.

Начинаем замену


Паяльная станция, управляемая процессором.

Перед тем, как мы начнём весь процесс пайки, следует напомнить, что если вы последуете нашим рекомендациям, то следует полагаться только на свой страх и риск. Восстановлением материнской платы следует заниматься только тем пользователям, кто знаком с техникой пайки. Мы не несём ответственности за возможные повреждения оборудования.

Для нашего задания необходимы профессиональные паяльники. Здесь не подойдут ни ручные паяльники, ни ручные отсосы припоя, поскольку нагрев и удаление припоя должны выполняться одновременно. Иначе припой сразу же застынет. Слои материнской платы способны забрать немало тепла, поэтому ручные отсосы припоя помогают мало.

Что касается откачивания припоя, то острие должно быть диаметром 0,8-1,0 мм, чтобы припой можно было легко выкачать из места пайки. В нашей лаборатории мы использовали довольно старую паяльную станцию PLE-9001 с процессорным управлением. На данный момент мы можем рекомендовать ещё одного производителя – ERSA, который выпускает полный спектр продуктов.


Откачиваем припой с помощью электрического насоса.

Кроме того, нам понадобится припой и специальные кусачки. Ещё пригодится пластиковый зажим, фиксирующий материнскую плату в вертикальном положении во время пайки.

Закрепив в зажиме материнскую плату, мы начали выпаивать конденсаторы с обратной стороны платы при помощи паяльника.

Иногда припой так и не выходит из места пайки, сколько бы мы его ни нагревали и откачивали. Поскольку нам необходимо отверстие, мы взяли небольшой металлический стержень (диаметр 0,8 мм), которым и прочищали отверстие, удерживая стержень в небольших плоскогубцах и аккуратно его нагревая. Если всё пойдёт как надо, то отверстие можно будет прочистить. Но будьте осторожны: применив слишком большое усилие, можно повредить слои, окружающие отверстия.


Очищаем отверстия с помощью металлического стержня.

Если и этот способ не поможет, то остаётся просверлить отверстие. Но мы эту процедуру не рекомендуем! К ней следует прибегать, если только вы не смогли откачать припой, и не помог металлический стержень.


Сверлим отверстие в материнской плате – только в крайнем случае.

Теперь мы выпаяли все плохие конденсаторы с материнской платы и можем впаивать новые. Во время пайки следите за соблюдением полярности. Если вы перепутаете плюс с минусом, то получите взорвавшийся конденсатор и дополнительную работу. У новых конденсаторов ножка с “плюсом” длиннее. Но не мешает лишний раз удостовериться, рассмотрев конденсатор поближе: на корпусе есть маркировка. Оба полюса отмечены и на материнской плате.


Следите за полярностью!


Насаживаем конденсатор.


Немного сгибаем ножки анода и катода вбок, чтобы конденсатор не выпал.


Затем припаиваем конденсатор.


И убираем лишние ножки.


Всё готово! Материнская плата снова работает!

Заключение

Как демонстрирует наша статья, материнскую плату во многих случаях можно отремонтировать в домашних условиях. Тем более, что обойдётся это в копейки, поскольку новые конденсаторы стоят немного.

Сегодня производители материнских плат всё больше используют твёрдотельные конденсаторы, но потёкшие электролитические конденсаторы по-прежнему являются одной из главных причин сбоя материнской платы. При этом нужно всё тщательно взвешивать: даже если гарантия на материнскую плату есть, в ряде случаев лучше не прибегать к замене. Возможно, у продавца нет точно такой же модели материнской платы, поэтому он предложит в обмен новую плату, для которой может потребоваться покупка новой памяти и процессора.

Но не стоит отчаиваться. Если вы знаете, что сбой вызван конденсаторами, их вполне можно заменить самостоятельно. Всё это обойдётся не дороже $15. Если вы умеете работать с паяльником, да и под рукой есть все необходимые инструменты, можно сэкономить на замене материнской платы, процессора и памяти. Кроме того, всё сказанное относится не только к материнским платам: конденсаторы на видеокартах тоже выходят из строя.

Если вы хорошо работаете с паяльником, то конденсаторы можно будет заменить меньше, чем за час, так как работа не очень сложная. Конечно, если есть необходимые инструменты. Если же инструментов нет, то почему бы не обратиться к другу, который “родился” с паяльником? Материнская плата всё равно “умерла”. Так почему бы не дать ей новую жизнь?

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате – это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

Вздутие конденсатора (вздутие электролита, cracked capacitor -eng.) — распространённое явление, возникающее по многим причинам, которое влечёт за собой его замену самого конденсатора и обследование окружающих цепей.

Причины вздутия конденсаторов.

Причины могут быть разнообразными, но основная — не качественный . Нет, это не говорит о том что качественные конденсаторы не вздуваются, совсем нет, ещё как вздуваются. Но давайте разберёмся с основной причиной вздутия.

Основная причина вздутия — выкипание или испарение электролита. Выкипание может происходить при высоких температурах . Стоит заметить, что это может быть как внешняя среда, которая подогревает конденсатор, так и внутренняя среда. Сам конденсатор может греться из-за несоблюдения полярности, некачественного питания, импульсов поступающих на него, пробивания изоляционного слоя, или из-за нехватки электролита (чаще всего). Также он может греться из-за не соблюдения эксплуатационных характеристик (V , ёмкость , макс. температура ).

Испарение электролита может происходить, если конденсатор имеет плохую герметичность . Со временем, уровень электролита уменьшится, а оставшийся закипает, вызвав вздутие конденсатора.

В некачественных конденсаторах, иногда происходит такое явление, что не происходит вздутие конденсатора, а электролит просто вытекает через его нижнюю часть (жидкость коричневого или жёлтого цвета). Такой конденсатор тем более подлежит замене, можно считать что он уже не работает. Если на верхней части конденсатора есть следы коррозии , значит часть электролита просочилась через верхнюю часть, а значит она не герметична. Такие «ржавые конденсаторы » тоже лучше заменить.

Бытует мнение, что вздутие — удел только электролитических конденсаторов, но это не так.

Полимерные конденсаторы тоже вздуваются и раскрываются.

Естественно вздутые конденсаторы подлежат срочной замене. Если устройство со «вздутиками» всё ещё работает, это не значит, что всё в порядке. Могут появиться сбои в работе и «странное» поведение оборудования.

Замена вздутого конденсатора.

Потребуется конденсатор с такой же ёмкостью или больше, но не меньше. То же самое касается напряжения. В любом случае, если конденсатор вздулся, лучше поставить более мощный на его замену.

Паяльником отпаиваем ножки предыдущего конденсатора, лучше взять мощный паяльник. Иголкой или тонким шилом прочищаем дырочки под контакты. Вставляем конденсатор и припаиваем с тыльной стороны. Стоит заметить что нужно соблюдать полярность , если она есть. На самой плате будет обозначение «минус», так вот конденсатор должен быть тоже помечен с одной из сторон минусом (обычно полоска). При несоблюдении полярности можно сымитировать небольшой взрыв . Даём остыть и отрезаем лишнее.

Как избежать вздутия конденсаторов.

Чтобы избежать вздутия конденсаторов:
  • Используйте качественные конденсаторы.
  • Не позволяйте конденсаторам нагревать до температуры более 45 градусов (следите за температурой окружающей их среды). Разместите их подальше от горячих радиаторов.
  • Используйте качественные входные, (если конденсаторы вздуваются в блоках питания компьютера).
  • Используйте качественные блоки питания (если конденсаторы вздуваются на материнской плате компьютера).

Соблюдение этих простых правил, убережёт вас от преждевременного выхода из строя конденсаторов.

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор “не держит” заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается “электролитов” и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).

Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость – тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор “пробит” и подлежит замене. Если лампочка совсем не светится – внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть “на глазок” рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
10 1.1 1.1
20 2.2 1.1
30 3.3 1.1
40 4.5 1.2
50 5.8 1.3
60 7.2 1.4
70 8.9 1.7
80 11.0 2.1
90 13.4 2.4
100 16.0 2.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3 10 16 20 25 32 40 50 63 80 100 125 160 200 250 315 350 400 450 500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом – через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ – измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров – это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени – это время, за которое напряжение на конденсаторе уменьшится в е раз (где е – это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы – необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая “прозвонка” конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы – это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Как заменить конденсаторы на материнской плате

Привет! Хочу поделиться с вами своим опытом замены конденсаторов в материнской плате. Вряд ли это можно назвать руководством и уж тем более мастер-классом, так как паяю я редко и криво, но посмотрим что получилось. ))

Не секрет, что материнская плата один из ключевых элементов компьютера. Именно она объединяет все компоненты системы в единое целое. Её выход из строя всегда доставляет массу неприятностей. Хорошо, если обойдется только заменой самой платы, но если она устарела, то, зачастую, приходится менять добрую половину комплектующих (процессор, кулер, оперативная память и т.д).

Поэтому многие пользователи в первую очередь хотят попробовать отремонтировать старую материнскую плату, чтобы избежать лишних затрат.

Одной из частых причин поломок материнских плат — «вздутие» конденсаторов. Конденсаторы могут выйти из строя из за  перепадов питания, высокой температуры, ну и просто от старости.

Достаточно теории, пора переходить к практике.

Я использовал следующие инструменты:

  • Паяльник;
  • Канифоль;
  • Припой;
  • Зубочистки;
  • Бензин очищенный (для удаления канифоли с платы).

Определить вздутые конденсаторы достаточно просто, если внимательно посмотреть на плату. На них  могут быть следы вытекшего электролита, а также они могут выгнуться сверху или снизу, что также будет хорошо заметно.

Вот так выглядит вспухший кондер.

Первым делом, нужно найти новые запчасти подходящего номинала. Внимательно смотрим на маркировку. В моем случае это 6,3 вольт 1500 мкф. На замену я использовал 16 вольт 1500 мкф. Можно брать конденсаторы большей емкости и большего напряжения, но нужно учитывать, что, чем больше напряжение и емкость, тем больше его размеры (может просто не влезть на то же место).

Поскольку, был вечер и магазины не работали, пришлось выпаять нужный конденсатор из нерабочей материнской платы.

В идеале, для выпаивания таких деталей нужно использовать оловоотсос, ну или паяльный фен. Поскольку у меня дома есть только паяльник, то пришлось выпаивать им, поочередно нагревая ножки конденсатора и вытаскивая его. Вывод: простым паяльником это делать крайне неудобно.

После того как мы извлекли старый конденсатор и приготовили ему замену, нужно прочистить отверстия для конденсатора, иначе старый припой не даст его нормально вставить. С оловотсосом можно было бы справиться за пару секунд, но мне пришлось повозиться и использовать зубочистки. Аккуратно вставляем их в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой. Еще раз повторюсь, что это нужно делать аккуратно, так как плата многослойная и можно повредить дорожки внутри платы.

Осталось самое приятное.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность. Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус « «), но лучше всего запомнить как был установлен старый. На самих конденсаторах также есть обозначения ввиде полосы со знаком » — «.

Запаиваем с обратной стороны. Фото самого процесса у меня нет, так как я не смог паять и одновременно фотографировать. Зато есть фото конечного результата )

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом мой ремонт закончился. Главное не бояться и аккуратно пробовать паять своими руками. Должен заметить, это очень увлекательный процесс.

Если у кого-то есть вопросы или дополнения, то пишите их в комментариях.

Можете ли вы изменить размер конденсаторов на насосе для бассейнов?







Мы получаем много вопросов по конденсаторам на двигателях бассейновых насосов. В основном есть два типа конденсаторов, используемых в двигателях насосов небольших бассейнов, которые обычно используются в жилых помещениях в системах наземных бассейнов. (1) Пусковой конденсатор используется в двигателях с конденсаторным пуском / асинхронным пуском и в двигателях с конденсаторным пуском / с конденсаторным пуском.Обычно он имеет значение от 108 до 300 мфд или мкФ. Термин mfd или uf является аббревиатурой от микрофарада и является взаимозаменяемым. Некоторые конденсаторы скажут, например, 25 мкФ или 25 мкФ, это одно и то же значение. Пусковые конденсаторы имеют диапазон значений, например, общий номинал 161-193 мкФ или мкФ. Номинальное напряжение обычно составляет 115 вольт на большинстве двигателей насосов мощностью менее 2 л.с., в то время как некоторые могут иметь номинальное напряжение 230 вольт. Значение пускового конденсатора не слишком критично, так как он активен в пусковой цепи только около 3/4 секунды.

(2) Второй тип конденсатора, используемый в насосах бассейна, – это рабочий конденсатор. Эти конденсаторы обычно имеют номинал от 15 до 50 мфд или мкФ. Эти конденсаторы имеют номинальное напряжение обычно 330 или 440 вольт. Вы можете безопасно заменить конденсатор с более высоким номинальным напряжением вместо конденсатора с более низким напряжением, но никогда не ставьте конденсатор с более низким напряжением, если исходное было более высоким напряжением — Эти конденсаторы используются во многих двигателях с конденсаторным пуском / конденсаторным запуском. В отличие от пускового конденсатора, значение рабочего конденсатора довольно критично.
ПРИ ЗАМЕНЕ РАБОЧЕГО КОНДЕНСАТОРА НЕОБХОДИМО ЗАМЕНИТЕ ЕГО НА ТАКОЕ ЗНАЧЕНИЕ В MFD, КАК БЫЛО ОРИГИНАЛЬНОЕ …
Мы провели обширные испытания, установив двигатель в испытательной лаборатории и заменив рабочие конденсаторы с различными значениями. от 15 до 50 мфд. Результаты показаны в таблице ниже (эта информация, вероятно, будет понятна только инженерам-электрикам)

Итог: Попробуйте заменить рабочий конденсатор на точное значение. Инженеры по двигателям провели обширные испытания своей продукции, чтобы определить наиболее эффективный конденсатор для данного двигателя. Ни при каких обстоятельствах нельзя заменять конденсатор более мощным, чем оригинальный. Наши испытания с конденсаторами с завышенными номиналами вызвали сильный перегрев двигателя и могли привести к возгоранию и / или разрушению двигателя. Если вам необходимо в крайне аварийной ситуации заменить рабочий конденсатор, попробуйте использовать тот, который по значению MFD как можно ближе или ниже, чем исходный … Никогда не устанавливайте конденсатор с более высоким значением MFD, чем исходный

Производитель указал конденсатор емкостью 30 мфд в качестве подходящего конденсатора для этого двигателя.

Часто задаваемые вопросы о конденсаторах двигателя

Часто задаваемые вопросы о конденсаторах двигателя
Обзор

Напряжение
Емкость
Частота (Гц)
Тип соединительной клеммы
Форма корпуса
Размер корпуса
Пусковые и рабочие конденсаторы

Пусковые конденсаторы

Applications
Specifications
Как узнать, неисправен ли мой пусковой конденсатор?
Мой мотор медленно заводится. Мой пусковой конденсатор плохой?
На моем пусковом конденсаторе есть резистор.Нужен ли мне конденсатор на замену?
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Рабочие конденсаторы

Как заменить пробку в кондиционере? Приложения

Технические характеристики
Когда заменять
Почему вышел из строя рабочий конденсатор?
Как долго должен работать мой рабочий конденсатор?
Двойные рабочие конденсаторы
Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Обзор

Напряжение

Конденсатор будет иметь обозначенное напряжение, указывающее его допустимое пиковое напряжение, а не рабочее напряжение.Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или выше исходного конденсатора. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле блок на 440 вольт прослужит дольше. Однако вы не можете заменить конденсатор на 440 В на конденсатор на 370 В без значительного сокращения срока его службы.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти каждый конденсатор будет использовать вставной соединитель в виде флажка размером ¼ дюйма. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку требуется для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы на клемму, и большинство из них работают Конденсаторы будут иметь 3 или 4. Клеммы на каждую стойку.Убедитесь, что заменяемые клеммы имеют по крайней мере такое же количество клемм на каждую клемму, что и у оригинального конденсатора двигателя.

Форма корпуса (круглая или овальная)

Практически все пусковые конденсаторы имеют круглый корпус. Круглые корпуса являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию. С точки зрения электричества разницы нет. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.

Старт vs.Рабочие конденсаторы

Пусковые конденсаторы дают большое значение емкости, необходимое для запуска двигателя в течение очень короткого периода времени (обычно секунд). Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.

В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов.Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно.

Просмотрите наш видеоурок ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


Пусковые конденсаторы

Приложения

Пусковые конденсаторы

используются для кратковременного сдвига фазных пусковых обмоток в однофазных электродвигателях с целью увеличения крутящего момента.Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. По этой причине пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи двигателя.


Технические характеристики

Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов.Концевые заделки обычно представляют собой нажимные клеммы ¼ “с двумя клеммами на каждый соединительный столб.


Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов пускового конденсатора бывает одного из двух типов. Катастрофический отказ обычно вызывается пусковой цепью электродвигателя, которая задействована слишком долго для номинальной кратковременной работы пускового ограничения. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены. Точно так же стартовый колпачок может иметь только разрыв блистера сброса давления .В любом случае легко сказать, что стартовый колпачок нуждается в замене.


Мой мотор медленно заводится. Мой пусковой конденсатор плохой?

Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Чтобы выяснить это, вам нужно измерить емкость пускового конденсатора.


На моем пусковом конденсаторе есть резистор. Нужен ли мне конденсатор на замену?

В большинстве сменных пусковых крышек резистор отсутствует. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора – сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.


Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Да. Щелкните здесь для получения более подробной информации.


Рабочие конденсаторы

Приложения

Конденсаторы

Run используются для непрерывной регулировки тока или фазового сдвига обмоток двигателя с целью оптимизации крутящего момента двигателя и эффективности.Они предназначены для непрерывного режима работы и, как следствие, имеют гораздо меньшую частоту отказов, чем пусковые конденсаторы. Они обычно используются в установках HVAC.


Технические характеристики

Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса имеют круглую или овальную форму, чаще всего используются стальной или алюминиевый корпус и крышка. Концевые заделки обычно представляют собой нажимные-дюймовые клеммы с 2–4 клеммами на каждую клемму подключения.


Когда заменять

Как правило, рабочий конденсатор намного дольше, чем пусковой конденсатор того же двигателя. Пробка также выйдет из строя или изнашивается иначе, чем стартовая, что немного усложняет поиск и устранение неисправностей.

Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, это чаще всего обозначается падением номинального значения емкости (значение микрофарад уменьшилось). Для большинства стандартных двигателей рабочий конденсатор будет иметь “допуск”, описывающий, насколько близко к номинальному значению емкости может быть фактическое значение.Обычно это от +/- 5 до 10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

В некоторых случаях из-за дефекта в конструкции конденсатора или иногда из-за неисправности двигателя, не связанной с конденсатором, рабочий конденсатор выпирает из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это приведет к размыканию цепи и отключению внутренней спиральной мембраны в качестве защитной меры, чтобы предотвратить вскрытие конденсатора.

Если она вздулась, пора заменить. Если вы не измерили целостность клемм, пришло время заменить.


Почему вышел из строя рабочий конденсатор?

Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к его расчетному сроку службы, может быть трудно определить причину по одному фактору.

Время – Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но как только расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность.Проще говоря, отказ может быть отнесен на счет того, что он «просто старый».

Heat – Превышение расчетного предела рабочей температуры может иметь большое влияние на ожидаемый срок службы рабочего конденсатора. Как правило, у двигателей, которые работают в жарких условиях или с недостаточной вентиляцией, срок службы конденсаторов резко сокращается. То же самое может быть вызвано излучением тепла от обычно горячего двигателя, которое приводит к перегреву конденсатора. В общем, если вы можете держать свой рабочий конденсатор холодным, он прослужит намного дольше.

Ток – Когда двигатель перегружен или имеет сбой в обмотках, это вызывает нарастание тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, поскольку обычно сопровождается частичным или полным отказом двигателя.

Напряжение – Напряжение может иметь экспоненциальный эффект, сокращая расчетный срок службы конденсатора. Рабочий конденсатор должен иметь указанное номинальное напряжение, которое нельзя превышать. Например, конденсатор рассчитан на 440 вольт.При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы за счет использования конденсатора с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


Как долго должен работать рабочий конденсатор?

Срок службы послепродажного рабочего конденсатора хорошего качества (того, который не идет в комплекте с вашим двигателем), составит от 30 000 до 60 000 часов работы.Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В отраслях с высокой конкуренцией, где каждая деталь может иметь значительное влияние на стоимость или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, можно выбрать рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») Могут резко изменить разумный ожидаемый срок службы рабочего конденсатора.


Конденсаторы двойного действия

Двойные рабочие конденсаторы – это два рабочих конденсатора в одном корпусе. У них нет ничего, что делало бы их электрически особенными. Обычно они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». У них также будет два разных номинала конденсатора для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона – 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору.Соединение большего размера всегда будет подключено к компрессору.


Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать две отдельные рабочие крышки?

Единственное преимущество конструкции двойного рабочего конденсатора заключается в том, что он поставляется в небольшом корпусе всего с 3 подключениями. Другой разницы нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

Конденсаторы 101 – iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор – это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный перетекает к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглых жестяных банок обычно являются электролитическими конденсаторами.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старого радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы

идеально подходят для более высоких частот, но не подходят для объемной фильтрации, потому что керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, параллельный керамическому дисковому конденсатору. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги – продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 – 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос здесь, как проверить конденсатор, чтобы узнать, нуждается ли он в замене.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего». Этот тест покажет только, полностью ли разряжен конденсатор. Это , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый для этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, который отображает только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показания измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с крышками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора – это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, – это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное – на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отсоединить аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подсоедините положительный (красный) провод от измерителя к нему, а отрицательный (черный) – к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют испытаний для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

Если конденсатор, который будет заменен или проверен, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом фрагменте схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki – это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Пришло время заменить конденсатор кондиционера?

Содержание
20AB61D7-9EA0-43FC-96C4-F789EC9363FBCОбработано с помощью sketchtool.

содержание icon

Проведя время под летним солнцем, самое освежающее переживание – открыть входную дверь и почувствовать волну прохладного воздуха, приветствующего вас дома.Конденсатор кондиционера – одна из основных частей вашей системы HVAC, которая делает возможным свежий воздух.

Конденсатор переменного тока – это искра, питающая двигатели кондиционеров. Он предлагает всплеск электричества для запуска работы, а затем поддерживает более низкий уровень энергии, чтобы система HVAC работала должным образом, пока не будет достигнута желаемая температура в помещении.

Хотя конденсатор является основным компонентом вашей системы охлаждения, он также является одной из наиболее часто заменяемых частей.Мы познакомим вас с предупреждающими знаками о том, что замена конденсатора кондиционера не за горами, о том, сколько вы можете рассчитывать заплатить за ремонт и почему этот ремонт не должен входить в ваш список DIY.

Что такое конденсатор переменного тока?

Конденсатор переменного тока напоминает высокую батарею цилиндрической формы. Он размещается в наружном блоке вашей системы отопления, вентиляции и кондиционирования воздуха или теплового насоса. Хотя конденсатор составляет лишь часть размера блока, который он питает, когда он перестает работать, вся система может отключиться.

Когда конденсатор HVAC выходит из строя или пропускает зажигание, ваше устройство может перестать подавать холодный воздух или вообще не запускаться. Конденсатор может выглядеть как батарея , но он делает гораздо больше, чем просто включает и выключает устройство.

Когда ваш термостат определяет, что пора остыть, он отправляет сообщение в вашу систему HVAC. Конденсатор играет ведущую роль, создавая начальный выброс электричества, который на 500% мощнее энергии, необходимой для простого поддержания работы системы.Этот электрический разряд вызывает начало цикла охлаждения, затем конденсатор поддерживает постоянный ток энергии для питания устройства, пока не будет достигнута желаемая температура.

Конденсатор подключается к вашей системе кондиционирования через несколько проводов. Это означает, что если деталь выйдет из строя, это намного сложнее, чем открыть устройство и вставить новый. Замена центрального воздушного конденсатора – это не работа, сделанная своими руками. Эти высоковольтные устройства могут вызвать серьезные травмы, даже если питание отключено.

Различия между пусковыми и рабочими конденсаторами

Ваша система отопления, вентиляции и кондиционирования воздуха может работать с одним конденсатором, также называемым двойным конденсатором, или двумя одиночными конденсаторами. Оба варианта создают один и тот же результат: более прохладный дом.

В системе с двумя конденсаторами, пусковой конденсатор и рабочий конденсатор необходимы для правильной работы системы. Пусковой конденсатор отвечает за выдачу электрического толчка, необходимого для запуска вращения двигателя HVAC. Как только цикл охлаждения начинается, рабочий конденсатор вступает во владение.

Рабочие конденсаторы более распространены и отвечают за поддержание работы двигателя до тех пор, пока ваш дом не охладится. Думайте об этих двух частях как о поездке на велосипеде.

Для того, чтобы колеса начали двигаться (пусковой конденсатор), требуется гораздо больше усилий, но как только вы достигнете постоянной скорости, вам не придется прикладывать столько энергии для поддержания движения (пусковой конденсатор).

Если ваша система в настоящее время работает на двух одиночных конденсаторах и одно из устройств выходит из строя, технический специалист может заменить обе части двойным конденсатором.

Двойной конденсатор выполняет обе функции – начальный электрический разряд и стабильную мощность – от одного компонента. Многие техники предпочитают использовать двойной конденсатор, потому что он экономит место внутри блока HVAC и его проще заменить, когда придет время.

Признаки неисправного конденсатора переменного тока

Когда необходима замена конденсатора переменного тока, вы испытаете любое количество общих симптомов, в том числе:

  • Ваш кондиционер задерживается в начале цикла охлаждения
  • Ваш кондиционер случайным образом отключается сам по себе
  • Ваш кондиционер вообще не включается
  • Ваш кондиционер звучит так, как будто он работает, но не подает холодный воздух
  • Ваш кондиционер издает гудение или гудение
  • Вы замечаете горение запах или дым от вашего устройства
  • Ваши счета за электроэнергию необъяснимо высоки

Конденсатор для блока переменного тока может выйти из строя из-за возраста и нормального износа, перегрева системы, неустановленного короткого замыкания, ударов молнии или скачков напряжения, или очень высокие температуры.

Последствия плохого конденсатора переменного тока

Первым признаком того, что ваш конденсатор больше не работает, является повышение температуры внутри вашего дома. Другие эффекты вы можете не заметить так быстро, но они могут нанести вред вашей системе охлаждения.

Плохой конденсатор не позволяет наружному блоку выполнять свою работу, что означает, что процесс охлаждения не может быть выполнен. Неправильное напряжение может легко вызвать повреждение других частей устройства.

Во-вторых, другие компоненты начнут перерабатывать, пытаясь восполнить неисправный конденсатор.Резкий скачок энергопотребления может привести к неожиданному увеличению вашего ежемесячного счета за электроэнергию.

Как проверить конденсатор переменного тока

Как мы упоминали ранее, конденсатор внутри вашей системы отопления и охлаждения может быть чрезвычайно опасным при неправильном обращении. По этой причине лучше обратиться к местному специалисту по ремонту систем отопления, вентиляции и кондиционирования воздуха, чтобы проверить или заменить конденсатор.

Когда прибудет техник, он с помощью мультиметра рассчитает ток, сопротивление и напряжение конденсатора.Проще говоря, они измеряют, удерживает ли конденсатор заряд, необходимый для запуска и завершения системы охлаждения. Если показания слабые или не регистрируются вообще, пора заменить конденсатор переменного тока.

Даже если у вас есть мультиметр, проверять конденсатор не рекомендуется. Несмотря на то, что десятки видеороликов на YouTube могут сделать эту задачу легкой, лучше не использовать самодельный подход и обратиться к профессионалу. Тестирование конденсатора может происходить только после того, как питание было отключено, проводка отключена и напряжение, остающееся в конденсаторе, было спущено.

Это опасная задача, и ее небезопасно решать даже после просмотра самого подробного видео с практическими рекомендациями. Положитесь на профессионала.

Каков срок службы конденсаторов переменного тока?

Марки и модели конденсаторов HVAC могут незначительно отличаться по сроку службы. В среднем конденсатор переменного тока имеет срок службы 10 лет. Чтобы обеспечить максимальную отдачу от вашего устройства, запланируйте плановое сезонное обслуживание вашей системы отопления и охлаждения.

Ежегодное техническое обслуживание вашей системы HVAC позволит техническому специалисту определить, есть ли потенциальная проблема с конденсатором.Решение проблемы до того, как деталь полностью выйдет из строя, избавит вас от головной боли, связанной с поиском подрядчика по оказанию экстренной помощи в области отопления, вентиляции и кондиционирования воздуха, и позволит избежать неудобных температур в помещении в середине лета.

Стоимость замены конденсатора переменного тока

Стоимость замены конденсатора переменного тока обычно составляет от 120 до 250 долларов, при этом большая часть ремонтов находится в диапазоне 170 долларов, по оценке Home Advisor.

Факторы, которые будут влиять на стоимость ремонта, включают марку, модель и напряжение конденсатора HVAC.Фактический компонент, как правило, стоит от 9 до 45 долларов, но фирменные детали с самым высоким рейтингом могут быть дороже.

Наибольшую часть ваших затрат вы потратите на оплату труда и установку. Средняя стоимость замены профессионального конденсатора составляет от 60 до 200 долларов. (Для сравнения, обычное посещение отделения неотложной помощи стоит 774 доллара, повторяя наш совет нанять профессионала.) Технический специалист должен выполнить работу около часа.

Ваша система HVAC не может работать должным образом без конденсатора переменного тока.Эта небольшая, но очень важная часть помогает сохранять в доме прохладу, когда летние температуры начинают расти. Запланируйте сезонное обслуживание систем отопления, вентиляции и кондиционирования воздуха с помощью профессионального специалиста, чтобы обеспечить оптимальную производительность вашего конденсатора и блока в целом.

Как определить, неисправен ли у вас конденсатор переменного тока, и как его заменить

Все мы знаем это удивительное чувство, когда вы приходите из жаркого летнего дня в свой прекрасный кондиционер. Но однажды вы можете войти и обнаружить, что ваш дом не такой крутой, как вы ожидаете.

Некоторым людям также знакомо чувство опущения при поломке блока переменного тока. Однако знать, что вам предстоит дорогостоящий ремонт, не должно быть никому.

Летом становится жарче и Июнь 2021 года бьет рекорды, нужен рабочий кондиционер.

Прежде чем пойти и заняться какой-нибудь серьезной работой, вам, возможно, придется задать себе вопрос: «У меня плохой конденсатор переменного тока?». Если да, то есть хорошие новости – вы можете заменить его самостоятельно.

Ознакомьтесь с симптомами и руководством по замене, чтобы узнать, действительно ли это вы.

Предупреждения по безопасности

Многие блоки переменного тока имеют конденсаторы, которые несут довольно высокий заряд, поэтому вы должны быть абсолютно осторожны при их замене или проверке. Однако, если вы примете разумные меры предосторожности, у вас не должно возникнуть проблем.

  • Никогда не касайтесь клемм на конце конденсатора
  • Не используйте предметы с металлической ручкой для разряда конденсатора.Используйте отвертку с изолированной ручкой и приложите металлический стержень отвертки к C к HERM и C к FAN, чтобы разрядить конденсатор.

При работе с высоковольтным оборудованием, таким как блок переменного тока, всегда убедитесь, что оно выключено. Если ваш блок переменного тока является съемным, убедитесь, что вилка полностью отключена. Если ваш AC подключен к автоматическому выключателю, убедитесь, что он отключен или выключен.

Признаки неисправного или неисправного конденсатора

Блоки переменного тока с плохими конденсаторами могут вызывать несколько интересных симптомов.Хотя это не всегда стопроцентная гарантия неисправного конденсатора переменного тока, велика вероятность того, что у вас возникнут проблемы, если вы увидите что-либо из этого.

Вы можете заметить:

  • Гудящие шумы
  • Проблемы с включением и выключением
  • Запах гари или электрического разряда
  • Счета больше, чем обычно
  • Агрегат может отключиться случайным образом
  • Без охлаждения
  • Щелчки или жужжание

Если что-то из этого звучит знакомо, есть большая вероятность, что с конденсатором переменного тока что-то не так, и вам следует подумать о его замене.

Если ни один из этих симптомов не подходит, обратитесь к нашему руководству по устранению неполадок, чтобы найти проблему.

Без охлаждения

Как только ваш кондиционер перестанет подавать холодный воздух, это верный признак того, что что-то не так. Возможно, это не долгосрочная проблема. Вы можете проверить, включив и снова выключив устройство, чтобы увидеть, исчезнет ли проблема.

Щелчки или жужжание

Это снова связано с двигателем. Когда двигатель пытается запуститься, но не может, он может издавать щелкающий или гудящий звук.Это хороший признак того, что конденсатор сломан.

Теперь, когда у вас есть хорошее представление о симптомах, которые вы можете увидеть, давайте узнаем немного о том, как работают конденсаторы. Таким образом, вы сможете понять, как их безопасно и эффективно заменить.

Счета за высокую энергию

Когда конденсатор переменного тока неисправен, двигатель вентилятора конденсатора должен работать больше и потреблять больше ампер. Поэтому, когда вы внезапно замечаете, что ваши счета за электроэнергию увеличиваются, у вас может быть плохой конденсатор. Чтобы понять, почему плохой конденсатор означает более высокий счет за электроэнергию, см. Раздел ниже о том, что делает конденсатор.

Случайные отключения

Вы можете обнаружить, что ваш блок переменного тока отключается, и вы время от времени ничего не делаете.

Проблема с включением или выключением

Эта проблема почти всегда связана с плохим конденсатором. Когда система пытается сделать что-то, для чего требуется больше энергии, неисправный конденсатор может вызвать проблемы. Этот симптом также может проявляться в том, что устройству требуется много времени для начала работы после его включения. Конденсатор дает начальный заряд энергии, и когда он выходит из строя, блок переменного тока изо всех сил пытается запуститься.Обычный обходной путь, хотя иногда и опасный, – это толкать лопасть вентилятора палкой. Это может быть опасно и привести к повреждению устройства, поэтому следует делать это только в экстренных случаях.

Запах гари или электрического разряда

Это немного сложнее, так как может быть много причин (ни одна из них не является хорошей), по которым ваш блок переменного тока может пахнуть гари. В вашем блоке переменного тока конденсатор приводит в движение двигатель. Когда конденсатор неисправен, двигатель имеет тенденцию к перегреву, и это может вызвать запах.

Что на самом деле делает конденсатор?

Если вы думаете о конденсаторе как о большом хранилище энергии, вы на правильном пути. Самый простой конденсатор состоит всего из нескольких компонентов. Это два проводника, которые пропускают электричество, и промежутки, которые блокируют поток электричества. Когда электричество проходит через конденсатор, электроны накапливаются в двух проводниках. Один проводник хранит отрицательно заряженные электроны, а другой – положительно заряженные.

Любой крупный прибор, такой как блок переменного тока, требует много электроэнергии для работы. И когда компрессор и двигатель вентилятора запускаются, им требуется большое количество энергии. Вы не захотите постоянно платить за электроэнергию по высокой цене – здесь на помощь приходят конденсаторы.

Конденсаторы используют накопленную энергию, чтобы дать большой толчок мощности вашему компрессору и двигателю вентилятора при запуске. Возможно, вы слышали шум, когда начинается этот процесс.

После запуска устройства в конденсаторе больше нет необходимости, и он может снова накапливать энергию для следующего большого толчка.

Что такое номинал конденсатора

У конденсатора много разных номиналов, но для наших целей нас интересуют только два:

  1. Рабочее напряжение
  2. Значение емкости. На вашем конденсаторе переменного тока будет 2 значения емкости. Один приводит в движение компрессор, другой – двигатель вентилятора.

Рабочее напряжение

На самом деле это просто показатель того, какое напряжение может пройти через конденсатор. Одна из причин, по которой конденсатор может выйти из строя быстрее, чем ожидалось, – это нестабильная подача электроэнергии в вашем доме.При замене конденсатора вы можете увеличить напряжение, так как это максимальное напряжение, с которым он может работать. Как правило, вы увидите конденсаторы на 370 или 440 В, но многие производители увеличивают запасы только до 440 В.

Значение емкости

Измеряется в микрофарадах и показывает, сколько энергии может хранить конденсатор. Обычно это будет написано 50 + 5 MFD или 50 + 5 μ. Здесь есть и другие сложности, но все будет в порядке, если вы можете указать микрофарады.

Примеры этикеток конденсаторов. Обратите внимание, что некоторые производители используют МФД для отображения рейтинга микрофарад, тогда как другие используют символ μ.

Как определить, неисправен ли конденсатор

Наиболее частым признаком неисправного конденсатора является гудение двигателя вентилятора конденсатора на внешнем блоке, или двигатель не запускается. В доме вы заметите, что холодный воздух не выходит из вентиляционных отверстий. Когда это происходит, конденсатор не работает и не может обеспечить достаточное количество накопленной энергии для работы двигателя вентилятора или компрессора.

Помимо всех симптомов из нашего списка, могут быть визуальные признаки того, что с конденсатором что-то не так. Если вы видите конденсатор на своем блоке переменного тока, его достаточно легко проверить на предмет повреждений или других функциональных проблем.

Визуальные признаки неисправного конденсатора

Внимательно посмотрите на конденсатор в вашем устройстве. Он выглядит гладким и безупречным? Если есть заметный прогиб или выпуклость, конденсатор необходимо заменить.Таким же образом, если масло выходит из верхней части конденсатора, срок его службы подошел к концу, и его необходимо заменить.

Пример неисправного конденсатора кондиционера: вздутие Пример неисправного конденсатора кондиционера: ржавчина

Будет ли кондиционер работать с неисправным конденсатором?

Скорее всего, вы услышите жужжащий звук, если конденсатор переменного тока неисправен и ваш переменный ток не работает. В аварийной ситуации электродвигатель вентилятора конденсатора переменного тока можно запустить с помощью джойстика до тех пор, пока не придет запасной конденсатор, однако мы не рекомендуем этого делать, поскольку вы можете вызвать дальнейшее повреждение лопасти вентилятора и / или змеевика конденсатора.Если змеевик конденсатора поврежден, то может потребоваться полная замена блока, поскольку стоимость ремонта будет слишком высокой.

Как проверить рабочий конденсатор с помощью мультиметра

Использование функции емкости на мультиметре

Включите счетчик

Поверните циферблат на функцию емкости (см. Ниже). В этом случае мы используем мультиметр Клейна, и мы должны нажимать кнопку выбора, пока не увидим, что это емкостной режим.

Установка емкости на мультиметре
Проверка секции вентилятора конденсатора конденсатора

Поместите один щуп мультиметра на C (общий)

Поместите другой датчик на ВЕНТИЛЯТОР.

Считывание емкости секции двигателя вентилятора конденсатора

Подождите несколько секунд, и на дисплее должно появиться значение емкости. При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.

Испытание секции вентилятора компрессора конденсатора

Поместите один щуп мультиметра на C (общий)

Поместите другой зонд на HERM. (HERM – сокращение от герметичный, что означает герметичный компрессор)

Считывание емкости компрессорной секции конденсатора

Подождите несколько секунд, и вы должны увидеть значение емкости на дисплее.При хорошем чтении микрофарады будут в пределах 10% от указанной на этикетке спецификации.

Использование функции сопротивления на мультиметре

Конденсатор также можно проверить, измерив сопротивление, но лучше всего это работает с аналоговым измерителем. Цифровые измерители обычно не показывают скачок вверх и вниз в омах, что указывает на исправный конденсатор.

Включите счетчик

Поверните циферблат на Ом. (Похоже на символ омега)

Получите быстрое считывание показаний сопротивления между клеммами

Наденьте датчик на C, а другой на ВЕНТИЛЯТОР.Вы должны увидеть показание сопротивления на стрелке прыжка и вернуться к бесконечности.

Переверните щупы и найдите такое же поведение на стрелке мультиметра.

Повторите это для C и HERM.

Измерьте сопротивление между выводами и корпусом конденсатора

Поместите один щуп на C, а другой на внешний металлический корпус конденсатора. Если вы получаете показания, указывающие на целостность цепи, то конденсатор неисправен.

Повторите это для терминала FAN и терминала HERM.

Проверка на короткое замыкание между выводами и корпусом конденсатора

Как заменить конденсатор кондиционера

Замена конденсатора переменного тока несложна и в большинстве моделей может быть сделана своими руками. Каждая модель отличается, поэтому процесс может немного отличаться в зависимости от вашей марки.

Основные шаги:

  1. Выключите и отсоедините блок переменного тока
  2. Откройте или удалите панель, которая дает вам доступ
  3. Обычно находится на боковой стороне устройства и имеет маркировку
  4. .
  5. Проверить, какой номинал сломанного конденсатора
  6. Снимаем старый конденсатор
  7. Установить новый конденсатор
  8. Включите блок переменного тока и протестируйте его

Хотя это относительно простая установка, мы рекомендуем прочитать инструкции до конца.У вас будет полное представление о том, что вы будете делать таким образом.

Шаг 1: Соберите Ваши инструменты

Вам нужна отвертка, чтобы снять панель доступа? Когда вы доберетесь до снятия конденсатора, вам могут понадобиться как отвертка 1/4 дюйма, так и отвертка 5/16.

Шаг 2. Выключите и отсоедините блок переменного тока

Убедитесь, что вы правильно выключили блок переменного тока. Мы рекомендуем выключить прерыватель, который идет к сети переменного тока, и извлечь блок предохранителей из коробки отключения кондиционера.

Шаг 3. Откройте или снимите панель доступа

Это должна быть маленькая распашная дверь. Обычно он появляется сбоку или снизу блока переменного тока. Для открытия некоторых панелей требуется отвертка, в то время как у других есть защелка. Будьте осторожны, открывая панель, чтобы у вас было безопасное место для ее хранения, если она полностью выйдет.

Шаг 4: Найдите конденсатор

Типичное расположение конденсатора в раздельной системе кондиционирования

Конденсатор в вашем блоке переменного тока будет выглядеть как металлический цилиндр.Он будет иметь два или три контакта наверху и к нему должны быть подключены провода.

Шаг 5: Осмотрите конденсатор

Сделайте быстрый визуальный осмотр конденсатора. Вы видите выпуклость? Нет ли утечек масла по бокам? Если что-то в конденсаторе выглядит деформированным или странным, скорее всего, это плохо.

Это также хорошее время для проверки остальных компонентов шкафа переменного тока. Есть ли на контакторе следы ожогов или точечной коррозии? Пробка компрессора в хорошем состоянии?

Шаг 6: Проверьте номинал конденсатора

Внимательно посмотрите на конденсатор.Вот пример, показывающий этикетку. Сбоку на нем должна быть этикетка, на которой будет рассказано все, что вам нужно знать о нем. Кроме того, предоставив нам вашу модель и серийный номер, мы можем помочь вам найти подходящий конденсатор для вашего кондиционера. Помните, из того, что мы видели выше; нас интересуют два рейтинга:

  1. Рабочее напряжение
  2. Емкость
Рабочее напряжение

Обычно это печатается в верхней части этикетки, а после нее идут буквы VAC.Вы можете увидеть текст, похожий на «370VAC» или «440VAC».

Номинальная емкость

Обычно он печатается под номинальным напряжением и имеет после него буквы мкФ или мкФ. Вы можете увидеть текст, похожий на «50uF» или «40 + 5MFD».

Шаг 7: Снимите старый конденсатор

Сначала сфотографируйте старый конденсатор на месте. Это поможет вам позже, когда вы вставите новую. Разъемов должно быть три – HERM, вентилятор и С.Важно, чтобы, когда вы снова вставляете новый конденсатор, вы подключаете его таким же образом.

ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ: Не прикасайтесь к клеммам конденсатора, так как он все еще может удерживать заряд.

После того, как вы сфотографировали разъемы, осторожно отключите их. Отсоединенные провода следует отложить в сторону, чтобы они не мешали.
Конденсатор должен легко сниматься. Обычно для их удаления требуется всего один или два винта, а некоторые из них являются защелкивающимися.Если винты удерживают конденсатор, убедитесь, что вы храните их в безопасном месте.

Шаг 8: Установите новый конденсатор

Один за другим присоедините провода, как на старом конденсаторе. Убедитесь, что правильные провода идут к разъемам HERM, вентилятора и C. Перед тем, как продолжить, проверьте их правильность.

Как только вы убедитесь, что у вас есть подходящие разъемы в нужном месте, пора снова установить конденсатор. Возьмите ранее снятые винты и установите конденсатор, приложив твердое усилие.Будьте осторожны, чтобы не повредить винты при установке.

Если для установки конденсатора не используются винты, он должен просто снова встать на место.

Шаг 9: Закройте и закрепите панель доступа

Не забудьте ввернуть обратно все винты, которые могли удерживать дверь закрытой. Панель с открытым доступом может быть опасной и должна быть закрыта должным образом.

Шаг 10: Включите блок переменного тока и проверьте

Пришло время вернуть все обратно.Если вы отключили или нажали прерыватель, подключите его снова. Если ваш блок переменного тока является вставным, снова вставьте вилку в розетку и включите ее.

Как только все вернется на свои места, вы можете включить кондиционер, как обычно, и посмотреть, работает ли он.

Шаг 11: Тестирование

Тестирование так же просто, как включение блока переменного тока и установка его на охлаждение.

Вы не должны слышать гудение или щелчки, а компрессор и двигатель вентилятора должны запускаться легко.Если эти два компонента все еще не запускаются, возможно, они были безвозвратно повреждены из-за неисправного конденсатора, который только что был заменен.

Вы должны увидеть заметную разницу. Теперь все должно работать должным образом, и ваша комната должна начать охлаждаться.

Простая замена конденсатора переменного тока

Итак, теперь, когда вы получили эту новую способность ремонтировать свой собственный блок переменного тока, что еще осталось? Что ж, для начала вам нужно хорошее и надежное место для замены неисправного конденсатора переменного тока.

К счастью, это действительно просто. Вы можете связаться с нашими специалистами по запасным частям или позвонить нам напрямую, чтобы поговорить с дружелюбным техником. Мы поможем вам определить, какой конденсатор вам нужен, исходя из вашей марки и модели или номинала конденсатора.

Высоковольтные конденсаторы и силовые резисторы

Конденсаторы

обычно рассчитаны на постоянное напряжение. Этот рейтинг означает, что можно ожидать, что деталь будет надежно работать в течение длительного времени при таком напряжении постоянного тока и при номинальной температуре конденсатора.Поскольку в большинстве приложений присутствует некоторая составляющая переменного напряжения, важно понимать факторы, которые определяют, сколько переменного тока может выдержать данная деталь с номинальным постоянным током. Эти факторы включают частоту, напряжение, номинальную мощность (размер), значение емкости и диэлектрические характеристики.

Влияние переменного тока на характеристики и надежность конденсатора частично зависит от типа используемого диэлектрика. Что касается керамических конденсаторов, все три первичных диэлектрика (NPO, X7R и Z5U) имеют разные изменения характеристик по отношению к приложенному переменному току.Например, для диэлектрика NPO значения емкости и коэффициента рассеяния будут оставаться относительно постоянными при подаче различных сигналов переменного тока. Однако X7R будет демонстрировать небольшие изменения с приложенной частотой и значительные изменения с величиной приложенного напряжения. Z5U изменится еще больше как с частотой, так и с напряжением. Конкретные конструкции конденсаторов будут влиять на количество изменений, которые произойдут в этих параметрах, поскольку они зависят как от используемого диэлектрика, так и от толщины этого диэлектрика для данного напряжения.Эти цифры относятся только к диэлектрику X7R. NPO не покажет никаких измеримых изменений ни напряжения, ни частоты. Z5U покажет изменения, аналогичные X7R, но гораздо более значимые. По этой причине Z5U редко используется в приложениях переменного тока.

В то время как изменения, связанные с частотой, можно легко отобразить для X7R (см. Рисунок 1), изменения, связанные с уровнем напряжения, зависят от диэлектрического напряжения (вольт на мил толщины диэлектрика) и будут разными для каждого номинального напряжения.Типичные значения для X7R показаны на рисунках с 2 по 5.

Для данного применения мощность, рассеиваемая в конденсаторе, может быть рассчитана по формуле P = i² R, где P = мощность в ваттах, i = среднеквадратичное значение тока через конденсатор и R = эквивалентное последовательное сопротивление (ESR) конденсатор. Тогда i = 2 pie fCE, где f = частота в герцах, C = емкость в фарадах и E = приложенное действующее напряжение. Наконец, R = d / (2 pie fC), где d = коэффициент рассеяния.Комбинируя эти три уравнения, получаем формулу окончательной мощности: P = 2 pie fCE²d.

Теперь необходимо определить значения емкости и коэффициента рассеяния, предполагая, что нам известны приложенное напряжение и частота. Емкость может быть определена по рисункам 1, 2 и 3 путем изменения номинальной емкости по изменениям, показанным для данной частоты и напряжения. Коэффициент рассеяния может быть определен аналогичным образом из рисунков 1, 4 и 5. Обратите внимание, что эти значения являются типичными и будут варьироваться от одного производителя к другому.Колпачок, изменяющийся из-за напряжения, также может быть изменен производителем в соответствии с требованиями конкретного приложения.

После внесения вышеуказанных поправок в емкость и коэффициент рассеяния на основе напряжения и частоты цепи фактическая потребляемая мощность в конденсаторе может быть рассчитана по формуле P = 2 pie fCE²d. Обратите внимание, что как значение емкости, так и частота напрямую влияют на мощность при заданном напряжении. Вот почему невозможно назначить общий рейтинг переменного тока (или коэффициент, применяемый к рейтингу постоянного тока) для конденсаторов.Это можно сделать только тогда, когда эти значения известны (как в приложениях с фиксированным значением 60 Гц).

После определения мощности необходимо выяснить, сможет ли данный конденсатор выдержать ее. Компания Johanson Dielectrics разработала таблицу номинальных мощностей для конденсаторов различных размеров, чтобы их можно было легко сравнить с расчетной мощностью (см. Таблицу 1).

Эти номинальные мощности основаны на повышении температуры на 25 ° C, измеренной на поверхности конденсатора при подаче питания.Характеристики также основаны на стандартном монтаже на печатной плате, отсутствии близлежащих источников тепла и без внешнего покрытия или заливки, которые могут препятствовать теплопроводности.

Вот пример: микросхема размером 0,1 мкФ, 500 В, X7R, 2520, предназначенная для поверхностного монтажа и работающая при 30 В среднеквадратичном значении и 10 кГц. В каталоге диэлектриков Johanson выберите номер детали Johanson 501h57W104KV4. Чтобы использовать формулу P = 2 pie fCE²d, значения f (10 000) и E (30) известны, а значения C и d должны быть определены по рисункам 1–5.

Соответственно, емкость из-за изменения частоты –2% из-за частоты (Рисунок 1) и + 25% из-за напряжения (используйте кривую 500 В постоянного тока на Рисунке 2). Это делает “C” фактической емкостью (.1) (. 98) (1.25) =. 123 мкФ. Аналогично, «d», коэффициент рассеяния с использованием большего из двух значений на рисунках 1 и 4 составляет 8% (0,08).

Теперь значения известны:
f = 10000
C = .123 (e-6)
E = 30
d = .08

Расчетная мощность 0,56 Вт.Ссылаясь на таблицу 1, номинальная мощность для размера h57 составляет 1,3 Вт, поэтому конструкция подходит для этого применения.

Applications Инженерная помощь предоставляется на заводе-изготовителе для других конкретных приложений или вопросов.

Заменить крышку 16 В на 10 В?

Цитата:

Сообщение от ulysses ➡️

Значит, показание 0 В ближе к точному. Конечно, это все еще не совсем точно, потому что я гарантирую, что напряжение переменного тока не равно нулю.Он ближе к нулю, чем ваш цифровой мультиметр может отличить от нуля, по крайней мере, при этой конкретной настройке. Если ваш измеритель имеет более низкий диапазон, вы можете попробовать, вы можете обнаружить, что в этой точке, которую вы измеряете, возможно, несколько десятков милливольт пульсации.


Мой счетчик – BK Precision 2408. Я не знаю, насколько он точен. Когда я устанавливаю измеритель на диапазон 2 В переменного тока, он становится равным 0,003 В. Если это точное показание, и учитывая, что питание уже отрегулировано, то я смотрю на пиковое рабочее напряжение , немного больше 8.8В – максимум 9В, если мне не повезет. Если предположить, что это так, хватит ли моего нового конденсатора на 10 В для замены?

Цитата:

Если у вас все еще есть желание заменить эту крышку, я бы посмотрел на другие бренды и посмотрел, сможете ли вы найти что-то, что работает лучше, но более компактно.


Я уже нашел его, но единственная проблема – его рейтинг 10 В, которого может быть недостаточно.

Относительно малой параллельной крышки:

Цитата:

Тот, который умещается в доступном пространстве, рассчитан на напряжение, которое он будет видеть, и имеет достаточно низкий импеданс, с которым стоит возиться.Я предполагаю, что ваш электролитический колпачок представляет собой радиально-выводной колпачок с расстоянием между выводами 0,3 дюйма. Идеальным параллельным колпачком была бы крышка для поверхностного монтажа, припаянная непосредственно к контактным площадкам большой крышки в нижней части печатной платы. керамический дисковый конденсатор с короткими выводами, припаянными непосредственно к контактным площадкам. Вы будете искать что-то, что хорошо работает на высоких частотах, где электролитический не работает. Возможно, керамический колпачок 0,1 мкФ с диэлектриком X7R. Вероятно, это будет рассчитан на 50 В, что было бы хорошо.


Спасибо за это предложение! Я могу попробовать это в сочетании с заменой большой крышки.

Цитата:

Сообщение от Итан Винер ➡️

Я удивлен, что это никто не заметил. Как вы думаете, почему замена того, что, как я полагаю, представляет собой совершенно грамотную крышку фильтра, на другую, как-то повлияет на качество звука? Вы измерили частотную характеристику, шум и искажения звуковой карты и обнаружили, что они отсутствуют? Какую конкретную проблему вы пытаетесь решить?


Эта большая крышка на самом деле является частью модификации, которую кто-то сделал для моей звуковой карты.У меня есть измерения до и после модуляции с помощью программного обеспечения Right Mark Audio Analyzer, и производительность после модификации, кажется, ухудшила примерно на 3 дБ по шуму и динамическому диапазону. Я подозреваю, что это большая кепка. Мне неудобно, как он установлен, а его СОЭ может быть ниже. Я нашел сменный колпачок на 10 В с ESR 0,012 Ом и номиналом пульсаций 2800 мА.

Замена колпачка и, вдобавок параллельной керамики, может оказаться излишним, но это не стоит больших затрат и, конечно же, не повредит.Если мне повезет, это может улучшить производительность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *